FOR INFORMATION ONLY ACTION BY HIGHER AUTHORITY PENDING RDTE PROJECT NO./FSN USATECOM PROJECT NO. 1-VG-120-151-034 YPG PROJECT NO. TEST SPONSOR PROJECT NO. USACDC AC NO. YPG REPORT 0049 INITIAL PRODUCTION TEST OF TRUCK, UTILITY, 1/4-TON, 4X4 M151A2 FINAL REPORT BY JOHN SHOEMAKER, SP4 SCIENTIFIC AND ENGINEERING OCTOBER 1970 U.S.A.T.T.C. TECHNICAL LIBRARY 4 DEC 1970 YUMA PROVING GROUND YUMA, ARIZONA DUGVAY FOUND ORGUND TECHNICAL LIBRARY YPG R0049 DISCLAIMER NOTICE This document may contain pages which do not reproduce legibly. Inconsistent page numbers are due to omittance of blank pages. Jech DEPARTMENT OF THE ARMY JShoemaker/mjo/727-1450-2929 Yuma Proving Ground Yuma, Arizona 85364 1 0 NOV 1970 STEYP-MTM SUBJECT: Final Report of Initial Production Test of Truck, Utility, 1/4-Ton, 4x4, M151A2, USATECOM Project No. 1-VG-120-151-034, YPG Report No. 0049 SEE DISTRIBUTION OF TEST REPORT Subject report is forwarded for information only. FOR THE COMMANDER: 1 Incl as beng abusta GEORGE A. CUSTER COL, Inf Director of Materiel Test # USATECOM PROJECT NO. 1-VG-120-151-034 INITIAL PRODUCTION TEST OF TRUCK, UTILITY, 1/4-TON, 4X4 M151A2 TEST REPORT BY JOHN SHOEMAKER, SP4 SCIENTIFIC AND ENGINEERING OCTOBER 1970 > YUMA PROVING GROUND YUMA, ARIZONA # TABLE OF CONTENTS | | | PAGE | |------|---|------| | ABST | RACT | 1 | | FORE | WORD | 111 | | | SECTION 1. INTRODUCTION | | | 1.1 | BACKGROUND | 1-1 | | 1.2 | DESCRIPTION OF MATERIEL | 1-1 | | 1.3 | OBJECTIVES | 1-2 | | 1.4 | SCOPE | 1-2 | | 1.5 | SUMMARY OF RESULTS | 1-2 | | 1.6 | CONCLUSIONS | 1-5 | | 1.7 | RECOMMENDATIONS | 1-5 | | | SECTION 2. DETAILS OF TEST | | | 2.1 | INTRODUCTION | 2-1 | | 2.2 | PREPARATION FOR TEST | 2-1 | | 2.3 | PERFORMANCE TESTS | 2-4 | | 2.4 | COOLING CHARACTERISTICS | 2-8 | | 2.5 | DUST TESTS | 2-13 | | 2.6 | TOXIC HAZARD TEST | 2-18 | | 2.7 | MAINTAINABILITY | 2-19 | | 2.8 | DURABILITY AND RELIABILITY | | | 2 0 | SAPETY EVALUATION AND VEHICLE CHARLITHY | | | | | PAGE | |------|----------------------------------|---------------| | | SECTION 3. APPENDICES | | | I | TEST DATA | | | | I.1 Receiving Inspection | I-1 | | | I.2 Initial Technical Inspection | 1-2 | | | I.3 Oil Analysis Summary | 1-5 | | | I.4 Thermocouple Locations | I-17 | | | I.5 Full Load Cooling Data | I-18 | | | I.6 Dust Test Data | I-24 | | | I.7 Radio Interference Data | I -2 5 | | | I.8 Final Inspection | I-27 | | | I.9 Photographs | I - 32 | | | I.10 Sample Questionnaire | I-39 | | | I.ll List of Vehicle Changes | 1-40 | | II | TEST FINDINGS | II-1 | | III | DEFICIENCIES AND SHORTCOMINGS | III~1 | | IV | MAINTENANCE EVALUATION | IV-1 | | V | REFERENCES | V-1 | | VI | ABBREVIATIONS | VI-1 | | VII | DESCRIPTION OF YPG TEST COURSES | VII-1 | | VIII | METEOROLOGICAL DATA | III-1 | | TV | DICTRIBUTION LICT | 1 | #### ABSTRACT An initial production test of three Trucks, Utility, 1/4-Ton, 4x4, M151A2 was conducted by Yuma Proving Ground during the period 6 April to 3 August 1970. The purpose of the test was to determine contractor conformance to contractual requirements, investigate adequacy of quality assurance procedures and provide verification of safety of the vehicles with particular emphasis on vehicle stability. After 1000 miles of break-in, each truck completed approximately 20,000 miles of durability operation. Cooling, dust, toxic hazard and various performance tests were run, and safety and maintenance evaluations were made. Tests were also undertaken to determine the effect of the new semi-trailing arm rear suspension on vehicle stability and handling. It was concluded that: - a. Vehicle was not adequately suppressed for radio interference radiation. - b. The design and/or quality of the A-frame control arms and propeller shaft yokes are inadequate. - c. Uneven application and brake pulling observed throughout test constitutes a safety hazard. - d. The rear suspension redesign has substantially improved vehicle stability and handling. It was recommended that the brake and A-frame problems be corrected and that all deficiencies and as many shortcomings as possible be corrected. # FOREWORD Yuma Proving Ground was responsible for test planning, test execution, and test reporting. ## SECTION 1. INTRODUCTION #### 1.1 BACKGROUND The M151 series vehicles have been found unsafe under certain driving conditions, and have demonstrated a number of deficiencies. A modified independent rear suspension consisting of semitrailing arms to replace the lateral swing arms has been tested and evaluated. The trailing arm design eliminated oversteer and produces sufficient body roll to provide a warning of impending danger during turns. Three successive but separate test programs, performed on 19 vehicles, accumulated a total of 340,000 miles. Major deficiencies included the transmission-transfer case, rear axle differentials and rear axle drive shaft universal joints. The first two test programs, an initial comparison test and a product improvement test, established the serious nature of these deficiencies. The third test, an extended inspection comparison test, disclosed correction of certain problems in the deficient components; however, other problems still persisted requiring additional testing to establish the merits of further improvements. The quality of the vehicles was poor; fasteners were improperly tightened and were incapable of maintaining torques or adjustments. The M151A2 vehicles provided for this test have incorporated the modified independent rear suspension and other safety features as well as improvements to deficient components. #### 1.2 DESCRIPTION OF MATERIEL The overall configuration of the Truck, Utility, 1/4-Ton, 4x4, M151A2 remains basically the same as previous models, but includes the modifications listed in Appendix I.ll. Readily noticeable are the larger one-piece windshield and rear window, the deep dish steering wheel, the windshield washer and wipers, the larger class "A" lights, the mechanical fuel pump located on the right side of the engine and the trailing arm suspension at the rear and underside of the body. The M151A2 vehicle dimensions, capacities, and weight remain unchanged from the M151A1. It is still powered by a four-cylinder, water-cooled gasoline engine, a four-speed forward transmission and selective front wheel drive. Performance characteristics, such as gradeability, maximum speed, braking, water fording and cross-country mobility, are the same as previous M151 series vehicles, although overall safety of the vehicle is improved. Characteristics are shown in Figure 1. The test vehicles, USA Reg No. 02DU8170, 02DU8370 and 02DU8670, will hereafter be referred to as U81, U83 and U86, respectively. #### 1.3 OBJECTIVES - a. To provide evidence of contractor conformance to contractual requirements, capability of manufacturing methods, adequacy of quality assurance procedures and ability to maintain the required level of quality throughout the production cycle. - b. To provide information to support a USATECOM position on suitability for release as required by AMCR 700-34. - c. To provide verification of safety of the vehicles with particular regard to vehicle stability. ## 1.4 SCOPE An initial production test of three M151A2 trucks was conducted from 6 April to 3 August 1970. Approximately 1000 miles of break-in operation and durability-reliability miles were completed by each vehicle. Cooling, dust, toxic hazard and various performance tests were run, and safety and maintenance evaluations were made. Tests were also undertaken to determine the effect of the new semi-trailing arm rear suspension on vehicle stability and handling. #### 1.5 SUMMARY OF RESULTS # 1.5.1 Preparation for Test (Para. 2.2) The three vehicles were received at Yuma Proving Ground on 1 April 1970. In the receiving inspection the seal on the truck van was found to be improperly secured. Batteries in U81 and U83 were connected and the latter was discharged because the ignition switch had been left on. One shortcoming was observed during the initial technical inspection; the toe-in for the front wheels was between 19/32 inch and 3/4 inch for all vehicles. No problems were observed during break-in operation, and a post break-in inspection was not deemed necessary. #### 1.5.2 Performance (Para. 2.3) The cramping angle of one vehicle was 1 degree in excess of the specification. Two vehicles failed the radiation phase of the radio interference suppression tests in the lower frequency range. ## 1.5.3 Cooling Tests (Para 2.4) The engine coolant or oil temperatures exceeded specified or desireable limits in all runs in first gear. The coolant temperature to the radiator exceeded the specified 232°F (7 psi radiator cap) at 1000 and 1800 rpm engine speed. The engine oil sump temperature exceeded the desirable maximum value of 270°F at 4000 rpm. # 1.5.4 Dust Tests (Para. 2.5) Service of the air cleaners under normal dust conditions was not required more frequently than the 1000-mile interval specified in the vehicle lubrication order. No serious dust contamination or damage to the engine or other vehicle components was observed as a result of normal dust operation. In extreme dust tests the air cleaner reached maximum restriction in 3.75 hours. During this period the air cleaner ceased to function properly and only oil wetted dust was left on the air cleaner oil cup. Pullover of oil to the engine occurred. The inside of the intake air hose connecting the carburetor to the air cleaner was covered with dust. Dust deposits were observed on all spark plug electrodes and engine cylinder compression had dropped an average of 30 psi from pretest checks. #### 1.5.5 Toxic Hazard Tests (Para. 2.6) There was no discernable concentration of carbon monoxide at any crewmember position. # 1.5.6 Maintainability (Para. 2.7) The ratio of total maintenance man-hours to operating hours (assuming 20 miles per operating hour) was 10.4 percent. Based on actual
operating hours, this ratio was 12.3 percent. No maintenance was required at the direct support level. The manuals were generally adequate as were the tools. Maintenance presented no unusual problems. # 1.5.7 Durability and Reliability (Para. 2.8) The three vehicles completed a total of 63,164 miles over all courses as summarized in Table 1. TABLE 1. Total Accumulated Mileages | | <u>U81</u> | <u>U83</u> | <u>U86</u> | |-----------------|------------|------------|------------| | Break-in | 1,001 | 998 | 1,012 | | With trailer | 10,001 | 10,027 | 10,034 | | Without trailer | 10,023 | 10,023 | 10,045 | | Total overall | 21,025 | 21,048 | 21,091 | All of the reported mileages are higher than actually run because the odometers of all vehicles were reading high by 6 to 8 percent. The overall fuel and oil consumption data are presented in Table 2. TABLE 2. Fuel and Oil Consumption | <u>Vehicle</u> | Fuel Consumption (miles/gallon) | Oil Consumption (miles/quart) | |----------------|---------------------------------|-------------------------------| | U81 | 15.1 | 4205 | | U83 | 15.1 | 4210 | | U86 | 14.8 | 3515 | There were two deficiencies observed during durability-reliability operation. The first was a propeller shaft failure on vehicle U83 at 17,170 test miles. The rear yoke broke and disabled the vehicle. The second was extensive brake pulling and uneven application experienced by all vehicles after 12,000 to 15,000 miles. Twenty-five of the 28 shortcomings reported during the test were discovered during durability-reliability test. The most significant are summarized below. - a. There were three incidents of broken radio interference suppression wire mesh insulation on spark plug leads. (Two more leads were replaced for the same reason during the final inspection.) - b. The ignition coil retainer fasteners lost torque on two vehicles. There was also one instance of a broken retainer tab. - c. Four turn signal control assemblies failed. - d. Thirteen tire inner tubes failed due to separation at the seam. - e. The bushings in the front upper and lower A-frame control arms were badly worn on all vehicles. - f. Six shock absorbers were replaced because of leaks. - g. A hole was discovered at a spot weld in the oil cup of one vehicle's air cleaner. - h. The front suspension upper ball joint boots were cracked on all three vehicles. - i. All vehicles exceeded two or more steering geometry specifications. - j. The rear differential of one vehicle had spalled rollers in the right output roller bearing. Both the bearing and its race were considered unserviceable. - k. The wheel cylinder boots had been cut by burrs on the piston skirts. # 1.5.8 Safety and Vehicle Stability (Para. 2.9) The only safety hazard observed was brake pulling and uneven brake application experienced on all vehicles. The problem was accordingly classified as a deficiency. A comparison of stability and handling between an M151Al vehicle and an M151A2 revealed greater stability, increased control and easier handling with the M151A2 truck. #### 1.6 CONCLUSIONS - a. Vehicle preparation and security for shipment were not satisfactory. - b. Vehicles are not adequately suppressed for radio interference radiation. - c. Design and/or quality control of the front A-frame control arms is unsatisfactory. - d. Durability of the propeller shaft is not adequate. - e. Tire inner tubes are of poor quality. - f. Air cleaner is not adequate in extreme dust conditions. - g. Front suspension upper ball joint boots are not durable. - h. The brake pulling and uneven brake application constitutes a safety hazard. - i. The rear suspension redesign has substantially improved vehicle stability and handling feedback to the driver. #### 1.7 RECOMMENDATIONS - a. Quality control be improved. - b. A-frame control arm bushing wear and propeller shaft breakage be further investigated and corrected. - c. Brake problems be corrected. - d. As many of the shortcomings as possible be corrected. ## SECTION 2. DETAILS OF TEST #### 2.1 INTRODUCTION Test vehicles, USA Reg No. 02DU8170, 02DU8370 and 02DU8670 will hereafter be referred to as U81, U83 and U86, respectively. #### 2.2 PREPARATION FOR TEST #### 2.2.1 Objectives - a. To determine the adequacy of the blocking and packaging during shipment and to determine if any damage had been incurred during shipping. - b. To insure that the vehicle and all components are properly serviced, secured, and adjusted prior to test. - c. To record component serial numbers and other pretest data. - d. To install the necessary instrumentation. - e. To payload the test vehicle to the proper gross vehicle weight. - f. To conduct break-in operation. - g. To determine the curb and gross weights of the vehicles. #### 2.2.2 Griteria (Ref 6, App V) - a. Materials. The materials used shall be as specified in the applicable specifications and drawings. - b. Construction. Vehicle, components, sub-assemblies, and assemblies shall be fabricated and assembled into a complete vehicle in accordance with drawings listed or referred to in the applicable Engineering Parts List. All parts, sub-assemblies, and assemblies shall be identified in accordance with MIL-STD-130. - c. Performance. Trucks shall conform to the performance requirements specified herein after a break-in run of 2 miles (road). Vehicle shall be serviced as specified herein after a break-in run of 2 miles (road). Vehicle shall be serviced as specified in Reference 6, Appendix V. - d. Marking. Registration numbers and other markings shall be applied in accordance with MIL-STD-642. Color shall be lusterless white enamel, matching color chip 37875 of Federal Standard No. 595. Data plates and part number marking shall be in accordance with MIL-STD-130. - e. Workmanship. The workmanship shall produce vehicles free from fabrication defects which would affect the appearance, functioning, or operating life of the vehicle or any of its components. All seals and gaskets shall be so installed and retained that fluid seepage is minimized, and so that exhaust gases are prevented from escaping. All welds, rivets, bolts, nuts or other fasteners shall be torqued as indicated on drawings, or where not specifically detailed on drawings, to the extent consistent with their respective application in commercial vehicles of similar construction. - f. Preservation, packaging, and vehicle processing inspection. Each vehicle shall be inspected for conformance to Section 5 requirements of Reference 6, Appendix V and the contract as applicable. - g. Vehicle processing. Vehicle and equipment shall be processed for shipment and storage in accordance with MIL-STD-281 to the extent indicated on the applicable vehicle preservation data sheet or other implementation document, as specified by the procuring activity. #### 2.2.3 Method A receiving inspection was performed to determine the effect of transporting on the vehicle components. Any damage incurred due to shipping or shipping procedures was reported and corrected during the initial technical inspection. The initial inspection was performed in accordance with USATECOM MTP 2-2-502 and was limited to the receipt inspection described in vehicle technical manuals. Identifying data on major components were recorded. An annual scheduled maintenance was performed in accordance with the technical manuals supplied with the vehicle. Lubricant samples were drawn from all sumps and analyzed. Instrumentation required for subsequent testing and the on-equipment-material were installed on the vehicle. A 1000-mile break-in run was conducted over hard surface and gravel roads at road speeds not in excess of 50 mph. No payload or trailed load was used during the break-in operation. After break-in operations were completed, the vehicle was payloaded and the weight recorded. ## 2.2.4 Results During the receiving inspection, the truck van security seal was found to be improperly closed and therefore ineffective. The batteries were connected on vehicles U81 and U83; the ignition switch of the latter was on, and battery discharged. Detailed results of the receiving inspection are contained in Appendix I-1. As a result of the visual and functional inspection during the initial technical inspection, no component teardown or discussembly was deemed necessary. The analyses of the oil samples taken at this time are presented in Appendix I.3. The major problems discovered during this inspection were as follows: - a. Toe-in was 19/32 inch to 3/4 inch for the front wheels of all vehicles. It was adjusted to 1/8 inch specification. - b. U81 and U86 had the old style rear windows rather than the modified full view rear window. - c. None of the vehicles had the new inside rear view mirror. - d. No Processing Forms (Form 1397) were received with the vehicles. The excessive toe-in was classified as a shortcoming (App III, Sec 2, Group 10). A complete summary of the initial inspection is presented in Appendix I.2. A list of instrumentation installed on the vehicles is included as Appendix I.4. The initial break-in was accomplished. A spot break-in inspection was not considered necessary. The curb and payloaded weights of the vehicles were as shown in Table 3. TABLE 3. Vehicle Weights | Vehicle | Curb Weight | Payloaded Gross | Vehicle Weight (1b)* | |---------|-------------|-----------------|----------------------| | No. | (1b) | Highway | Cross-country | | U81 | 2520 | 3600 | 3200 | | U83 | 2480 | 3610 | 3210 | | U86 | 2520 | 3600 | 3200 | ^{*}Includes driver # 2.2.5 Analysis The excessive toe-in might have caused difficulty in steering and increased tire wear otherwise all other criteria were met. Curb weights were taken with a roll bar installed, accounting for the additional curb weight shown in Table 3. The vehicles were payloaded to a GVW of 3200 pounds or 3600 pounds, including driver, rather than adding 800 or 1200 pounds to the curb weights for cross-country or highway payloads, respectively. #### 2.3
PERFORMANCE TESTS #### 2.3.1 Objectives - a. To determine the maximum and minimum road speeds. - b. To obtain data on the service and parking brakes. - c. To determine the turning diameter. - d. To determine the shallow water fording capabilities. - e. To determine the ascent grade speed. - f. To conduct fuel supply capability tests during longitudinal and side slope operations. - g. To conduct radio interference suppression tests. # 2.3.2 Criteria - a. Payload. Truck payload shall include driver and personnel and shall be as specified in Table 4. - b. Towing Load. Towed load performance requirements for the M151A2 shall be met when coupled to a M416 tactical-type trailer, and shall be as specified in Table 4. TABLE 4. Weights and Loads, Pounds | | M151A2 | |--|--------------| | Curb weight | 2400 | | Rated payload (including personnel): Highway Cross-country | 1200
800 | | Gross vehicle weight (GVW): Highway Cross-country | 3600
3200 | | Rated towed load: Highway Cross-country | 1300
1000 | c. Level road speeds. The truck, including cross-country payload and with cross-country towed load, shall be capable of sustaining a speed of not less than 60 miles per hour (mph); a low speed of not more than 2-1/2 mph in low gear, when operated on smooth, dry, level, hard-surfaced roadway. Drumming, shimmy or tramping shall not occur throughout this speed range. - d. Grade speeds. The truck, including cross-country payload and with cross-country towed load, shall be capable of negotiating grades up to 6-1/2 percent at a speed of 30 mph when operated over a smooth, dry, hard-surfaced roadway. Without towed load, truck, including cross-country payload, shall be capable of negotiating grades up to 60 percent at a speed of 2-1/2 mph when operated over a smooth, dry, hard-surfaced roadway. - e. Slopes. The truck, including cross-country payload, shall be operated on side slopes, sloping right or left, up to 40 percent. - f. Shallow water fording. The vehicle, without fording equipment and with rated cross-country payload and towed load, shall ford a hard-bottomed, relatively level crossing in fresh or sait water to a depth of at least 21 inches. The vehicle without fording equipment, or modification, shall meet all requirements of 3.5.7.1 of MIL-T-45331C, except the depth shall be 21 inches. - g. Service brakes. Service brakes shall stop the vehicle within 30 feet from a speed of 20 mph, on dry, hard, relatively level, smooth road, free from loose material. Service brakes shall control and hold the vehicle on an incline of 60 percent. - h. Parking brake. The parking brake shall hold the vehicle on a dry, concrete incline of 40 percent with highway payload; and on a dry, concrete incline of 60 percent with cross-country payload. - i. Maneuverability. The vehicle shall demonstrate a maximum turning radius of 18.5 feet, measured from the center line of the outside front wheel, when negotiating full turns to right and left. - j. Radio interference suppression. Each vehicle shall be radio interference suppressed in accordance with the tactical vehicle requirements of MIL-E-55301. # 2.3.3 Method - 2.3.3.1 Maximum and Minimum Speeds. The vehicle, with cross-country payload (800 pounds) and cross-country towed load (1000 pounds) was operated at reduced speeds until all components reached normal operating temperature. The vehicle was then operated at full throttle in the highest gear (fourth) until maximum road speed was attained. The minimum speed was determined in the lowest gear range at the lowest engine speed in which vehicle would operate smoothly without application of the brakes. All speeds were measured using a calibrated fifth wheel. - 2.3.3.2 Stopping Distance. The brake performance test was conducted with highway payload (1200 pounds) at a road speed of 20 mph. The distance from the point of brake application to complete stop was measured with a fifth wheel and pousometer. Six stops were attempted and the results averaged. 2.3.3.3 Slopes. The vehicle, with highway payload (1200 pounds), was stopped and held on a 60 percent incline by the service brakes. The vehicle, with cross-country payload (800 pounds), was operated on side slopes of up to 40 percent, sloping right or left. The holding ability of the parking brake was checked on the 40 percent incline with the vehicle highway payloaded, and on the 60 percent incline with the vehicle cross-country payloaded. Since an actual 6-1/2 percent slope was not available, it was simulated using the field dynamometer to measure drawbar pull or reserve power for climbing hills. To determine if the vehicle could meet the specified criteria, the drawbar pull of each truck was measured at 30 mph. The drawbar pull figures were then converted to determine the maximum slope each vehicle would ascend at 30 mph. The vehicles with cross-country payloads were driven up a 60 percent grade and the road speeds were measured. - 2.3.3.4 Cramping Angle and Turning Radius. The vehicle negotiated full 360-degree turns at slow speeds to the right and left, with the turning diameter measured from the center line of the outside front wheel. Degree plates were used in determining the maximum swing-arc of the front wheels. - 2.3.3.5 Shallow Water Fording. The vehicle, without fording equipment and with rated cross-country payload and towed load when applicable, forded a hard-bottom, relatively level crossing in fresh water to a depth of 21 inches. The fording operation covered a period of 15 minutes. - 2.3.3.6 Radio Interference Suppression. The vehicle was checked for radio interference suppression in accordance with tactical vehicle requirements of MIL-E-55301. ## 2.3.4 Results 2.3.4.1 The maximum and minimum vehicle speeds are presented in Table 5. TABLE 5. Maximum and Minimum Road Speeds | Vehicle
No. | Maximum Speed (mph) (4th gear) | Minimum Speed (mph) (lst gear) | |----------------|--------------------------------|--------------------------------| | U81 | 61.9 | 2.1 | | U83 | 60.9 | 1.6 | | U86 | 60.5 | 2.0 | | Criteria | 60.0 Minimum | 2.5 Maximum | Maximum speed tests were first run just prior to a 12,000-mile maintenance. Although U86 passed at that time, U81 and U83 failed with average speed of 58.2 and 57.0 mph, respectively. After a tune-up at the 12,000-mile maintenance, U81 and U83 met the criteria with results shown in Table 5. 2.3.4.2 The average stopping distances at 20 mph are shown in Table 6. TABLE 6. Stopping Distance | Vehicle
No. | Stopping Distance
(ft) | |----------------|---------------------------| | U81 | 18.8 | | U83 | 19.6 | | U86 | 19.3 | | Criteria | 30.0 Maximum | 2.3.4.3 Slope Operations. All vehicles were successfully held on a 60 percent incline with the service brakes when loaded with a highway payload (1200 pound). The parking brakes held all vehicles on both the 60 percent and 40 percent slopes under the specified loading conditions. The vehicles negotiated the side slopes without difficulty, and ascended the 60 percent slopes at the speeds shown in Table 7. TABLE 7. Road Speeds Ascending 60 Percent Slope | Vehicle No. | Speed (mph) | |-------------|-------------| | U81 | 5.6 | | U83 | 6.2 | | U86 | 5.2 | | Criteria | 2.5 Minimum | The simulated grades that each vehicle would ascend at 30 mph are summarized in Table 8. TABLE 8. Simulated Slope Performance at 30 MPH | Vehicle No. | Percent Slope | | | |-------------|---------------|--|--| | U81 | 8.2 | | | | U83 | 7.9 | | | | U86 | 8.0 | | | | Criteria | 6.5 Minimum | | | 2.3.4.4 Cramping angles and turning radii are presented in Table 9. TABLE 9. Cramping Angles and Turning Radii | | Cramping Angle (°) | | Turning Radii (ft) | | |---------------|--------------------|---------|--------------------|-----------| | Vehicle No. | Left | Right | Left | Right | | U81 | 31 | 31 | 17.6 | 17.5 | | U83 | 32 | 30 | 17.9 | 17.8 | | U86 | 29-1/2 | 28-1/2 | 18.0 | 18.3 | | Specification | 31 Max. | 31 Max. | 18.5 Max. | 18.5 Max. | - 2.3.4.5 Fording operations and post-fording checks were satisfactory for all vehicles. - 2.3.4.6 Radio Interference Suppression. All vehicles passed the conduction test. In the radiation test, U81 exceeded the passing limit at frequencies of 3, 5 and 8 megacycles. U83 similarly exceeded the passing limit at frequencies of 3 and 5 megacycles. Complete test data are contained in Appendix $I_{\circ}.7$ #### 2.3.5 Analysis All performance tests met the specified criteria except for the radiation phase of the radio interference suppression tests. It is believed that the generators were responsible for the excessive noise on the two failing vehicles. Two check tests were attempted with the generator disconnected, but the ambient noise level was too high to obtain valid readings. The rolling resistance of the trailer in the slope simulation test was calculated to be 37 pounds and is included in the results. The cramping angle of the left wheel on vehicle U83 was 1 degree in excess of the specification. Cramping angles in excess of the specification can result in damage to the steering gear. #### 2.4 COOLING CHARACTERISTICS #### 2.4.1 Objective To determine the cooling characteristics of the engine and power train under full load conditions. #### 2.4.2 Criteria a. Engine. The engine shall conform to MIL-E-45332, except that the section covering preparation for delivery shall not apply. The vehicle shall meet all performance requirements specified herein with engine installed. - b. Extreme climatic operation. The vehicle shall be capable of having the engine started and normal operation maintained, in still air having any ambient air temperature from -25°F to +120°F, without external aid, in altitudes from sea level to a 3000 feet elevation above sea level. - c. High temperature operation. The vehicle shall be capable of having the engine started and normal operation maintained, in still air having ambient air temperatures
and altitudes specified in Table I, without external aids, and with a relative humidity as low as 5 percent. The vehicle fuel system shall function without evidence of vapor lock, and the engine coolant temperature shall remain below the boiling point. The engine coolant temperature limit specified at Paragraph 3.5.1.3 of MIL-T-45331C considers coolant boiling point with a pressurized system. TABLE I. Elevation Temperature Chart | Elevation | Minimum Ambient
Air Temperature | |-----------|------------------------------------| | 4000 feet | 108°F | | 5000 feet | 100°F | | 6000 feet | 97 ° F | | 7000 feet | 93°F | | 8000 feet | 90 ° F | ## 2.4.3 Method - 2.4.3.1 Road Load Cooling. During operation on all test courses, the following temperatures were monitored: coolant from the engine, engine oil sump, transmission oil sump, front and rear differential oil sumps, and ambient air temperature. The maximum temperature reached by each component was recorded on every shift. The coolant temperature drop across the radiator was also monitored, but not recorded. - 2.4.3.2 Full Load Cooling. One vehicle, payloaded to the maximum gross vehicle weight (3600 pounds) was operated with a mobile field dynamometer at the engine speeds and corresponding road speeds shown in Table 10. All tests were conducted on a paved, near level (0.8 percent upgrade from south to north), 2-mile course. TABLE 10. Full Load Cooling Engine and Road Speeds | Gear | Engine Speed (rpm) | Road Speed (mph) | |------|--------------------|------------------| | 1 | 1000 | 2.9 | | 1 | 1800 | 6.2 | | 1 | 4000 | 11.6 | | 2 | 1800 | 9.6 | | 2 | 2600 | 14.2 | | 2 | 2900 | 15.9 | | 2 | 3300 | 17.9 | | 2 | 3 600 | 20.0 | | 3 | 1800 | 18.3 | | | | | The cooling runs were made after completion of the 20,000 miles of durability reliability operations, and with the thermostat blocked open. Each run was continued until temperature stabilization was reached, temperatures exceeded the maximum allowable limits, or imminent failure was apparent (the criteria for stability if a component temperature are that the three temperature readings taken in each of two directions of the test course vary by no more than 5°F and that any reading taken in one direction vary no more than 10°F with any reading taken in the other direction). An attempt was made to stabilize engine oil and engine coolant temperatures on all runs. In addition, stabilization of the transmission was attempted at an engine speed of 1800 rpm in second and third gear ranges, and stabilization of the differential temperatures was attempted at 1800 rpm in first gear. Cooling runs were made in ambient temperature of not less than 95°F. Individual component temperatures were then extrapolated to 120°F by adding 1 degree to the recorded ambient temperature for each degree of that temperature below 120°F. #### 2.4.4 Results 2.4.4.1 Road Load Cooling. The maximum component temperatures are summarized in Table 11, along with the environmental conditions present at the time the temperature was recorded. TABLE 11. Road Load Cooling Data (Not Extrapolated) | | | \mathtt{Max}_{\circ} | | | |----------------|---------------------|------------------------|------|-------------------------------------| | | | Temp | Amb | | | <u>Vehicle</u> | Component | Recorded | Temp | Course | | U81 | Coolant from engine | 210° | 100° | Hilly cross-country with trailer | | | Engine oil | 225° | 100° | Paved without trailer | | | Transmission oil | 230° | 100° | Paved without trailer | | | Front differential | 180° | 100° | Paved without trailer | | | Rear differential | 300° | 90° | Winding gravel (break-in) | | U83 | Coolant from engine | 205° | 105° | Level cross-country without trailer | | | Engine oil | 225° | 102° | Tank gravel without trailer | | | Transmission oil | 200° | 108° | Paved without trailer | | | Front differential | 185° | 107° | Hilly cross-country with trailer | | | Rear differential | 275° | 95° | Paved with trailer | | U86 | Coolant from engine | 205° | 100° | Level cross-country without trailer | | | Engine oil | 200° | 105° | Winding gravel without trailer | | | Transmission oil | 300° | 105° | Winding gravel without trailer | | | Front differential | 195° | 105° | Winding gravel without trailer | | | Rear differential | 305° | 95° | Winding gravel (break-in) | In the early stages of full load cooling, the rear differential overheated after an extremely short period of operation. Since this did not appear normal, brief road load cooling runs were made. The temperature of the rear differential could not be stabilized to 4-wheel drive on paved road, even at speeds as low as 30 mph. In 2-wheel drive the temperature of the rear differential stabilized at 342°F, 92° above the sustained temperature limit. A check at 50 mph on gravel roads resulted in temperature of the rear differential stabilizing at 260°F and front differential at 175°F (4-wheel drive). In view of the difference in temperatures experienced between operation on paved and gravel road, the rolling circumference of the tires was measured. One tire was found to have about 2 inches less rolling circumference per revolution than the other three. The mismatched tire was replaced, and road load cooling tests were run once again on paved road in 4-wheel drive and at 50 mph, the temperature of the front and rear differentials stabilized at 180° and 212°, respectively. In 2-wheel drive on the same course, the temperature of the rear differential stabilized at 237°. With the overheating problem solved, the vehicle was returned to full load cooling operation. 2.4.4.2 Full Load Cooling. The data for the cooling tests are included in Table 1 of Appendix I.5. Extrapolated temperature versus time curves for component temperatures that did not stabilize are presented in Figures 1, 2, and 3 of Appendix I.5. Points which do not lie on the curves may be attributed to sudden changes in wind direction or velocity. During these tests, a run was started at 1800 rpm, second gear, for which it was desired to stabilize the transmission oil sump temperature. During this test the transmission failed at a temperature of 393°. A teardown revealed that the rear output seal and the throwout bearing had failed. The transmission input gear which is on the helical spur gear shaft had many chipped teeth (Fig. 6, App I.9), the second speed helical gear was heavily surface fatigued, and the transfer input shaft helical gear had four sheared teeth (Fig. 7, App I.9). It is hypothesized that the excessive temperature damaged the rear seal, resulting in a loss of lubricant. The vehicle was running at maximum torque (1800 rpm) in second gear, and the force and minimal lubrication on the transmission input gear caused it to chip away. These chips probably jammed other gears, causing the transfer input gear teeth to shear. Eight full load cooling tests were conducted prior to the transmission failure mentioned above. At this time it was discovered that the transmission oil and differential oil sump thermocouple leads had been unknowingly damaged prior to the start of these tests, such that these thermocouples gave incorrect readings. Thus the transmission was probably at a high temperature during these runs as well, for three were unsuccessful runs at 3300 rpm, first gear. Upon replacement of the transmission, the runs mentioned above were repeated. The data for these final runs appear in Table 1, of Appendix I.5. During an inspection after completion of full load cooling tests, engine dry compression was observed to have dropped from the specification of 135 psi, pressured before test, to an average of 86 psi. Wet compression after test was about 50 psi higher than the dry compression, indicating worn piston rings. #### 2.4.5 Analysis 2.4.5.1 Road Load Cooling. The engine coolant ran consistently at the upper end of the 170° to 190°F operating range for all vehicles throughout the test. Several times temperatures exceeded 200°F, but checks at those times revealed no problems in the system. These coolant temperatures are not considered serious. The engine, transmission and oil temperatures remained consistently below critical limits. Although temperatures were high in a few instances (the U86 transmission in Table 11, for example), the overall road load cooling of these components was satisfactory. The rear differential shows some improved road load cooling performance over that in previous M151A1's where temperatures of 503°F were obtained (Ref 13, App V). The only excessive temperatures recorded in durability operation occurred during break-in. The abnormal differential temperatures observed in road load cooling check during full load cooling operations emphasize that the differentials cannot tolerate a major difference in tire rolling circumferences. In the case of the present test where overheating occurred, the two tires causing the problem were of the same nominal tire size, same tread pattern, produced by the same tire manufacturer, and had approximately the same tread wear, but had a rolling circumference difference of more than 2 inches. This is a serious consequence because a 3-inch difference in rolling circumference between a new and worn tire can easily be realized. 2.4.5.2 Full Load Cooling. The engine coolant or oil temperatures exceeded specified or desirable limits in all runs in first gear. The coolant temperature to the radiator exceeded the specified $232\,^\circ\mathrm{F}$ (7 psi radiator cap) at 1000 and 1800 rpm engine speeds. The engine oil sump temperature exceeded the desirable maximum value of $270\,^\circ\mathrm{F}$ at 4000 rpm. The transmission oil sump operated at 300 to 340°F except at high engine speeds (4000 rpm). The transmission temperatures were stabilized on four runs. The temperature difference between the front and rear differential sumps was quite apparent (100° or more) in all runs and the difference increased as each run continued.
This may have been caused by more hot air from the engine reaching the rear differential than the front, increased loading on the rear differential due to weight transfer of the vehicle as it pulled the dynamometer truck, or a breakdown of the lubricant during previous tests. The rear differential exceeded its temperature limitations several times but only two occasions were recorded since the others were caused by a leaking output seal and a set of tires with different rolling radii. The rear differential overheated at 1800 rpm in first gear and 2600 rpm in second gear. Both of these tests were run the same day (14 July 1970) with a third test following. Coolant and engine oil temperatures stabilized on this third run, but not before the rear differential reached its limit. Curves of the temperature rise for the front and rear differentials may be found in Figures 1, 2 and 3 of Appendix I.5. They indicate a temperature rise of 6°F/minute in the rear differential. During one run at 1000 rpm in first gear the vehicle began to exhibit signs of vapor lock. This occurred in a turn and some recirculation of hot air through the radiator was occurring. The vehicle was stopped and the engine nearly died. About 3 minutes earlier, temperature of the fuel after the pump was only 100°F and fuel pump pressure was 4.5 psi. After a cool-down period the test was resumed without difficulty. The temperatures from top to bottom and side to side of the radiator varied little except in the lower left corner. Air at this point was 10 to 20° hotter than at the other points in front of the radiator. Some hot air from the engine probably recirculated to the front of the radiator. After the air passes through the radiator the upper left corner becomes 10° hotter than the other points behind the radiator. This is due to the coolant entering the radiator at the upper left corner. At the end of the test the engine was observed to have low compression pressures (Para. 2.8.3). The effect of the low engine compression would be less power, hence less generated heat. Thus, some of the engine temperatures taken in the latter part of the test may be slightly lower than would be observed with an engine having satisfactory compression. In summary, the engine coolant temperature exceeded its limit. There was one occasion of vapor lock. The transmission and rear differentials lubricants of one vehicle exceeded their limits thus did not meet the criteria set down in Paragraph 3.5.1.3 of MIL-T-45331C. #### 2.5 DUST TESTS # 2.5.1 Objective To determine the operating life of the air cleaner between required service intervals under normal and extreme dust conditions. To determine the effect of dust contamination on vehicle components. #### 2.5.2 Criteria - a. Servicing. Design and construction of the air cleaner shall permit quick and convenient disassembly for cleaning and servicing of the oil cup and filter element without removing or disturbing the clean air chamber or its connections to the engine and without the use of special tools (Ref MIL-A-13488A (Ord)). - b. Resistance to Air Leakage. The air cleaner shall not leak air when properly assembled and tested to a vacuum of 50 inches of water (Ref MIL-A-13488A (Ord)). ## 2.5.3 Method - 2.5.3.1 Normal Dust Conditions. Air cleaner servicing requirements were recorded during durability test operations. After completion of the durability mileage an inspection was made to determine if dust had caused any damage to on-equipment-material, controls or other components. The cylinder head of vehicle U81 was removed to facilitate a visual inspection of the valves, cylinder walls and combustion chambers. - 2.5.3.2 Extreme Dust Conditions. The oil bath air cleaner for the M151A2 truck has two major components. The upper element consists of the cover and attached filter element, and the weathercap. It excludes the air duct hose and hose clamp. The lower element includes the oil cup, removable wire mesh filter and the canister body. The two major components were washed and dried. The oil cup in the lower element was filled to the proper level and then both components were weighed. The air cleaner was installed on vehicle U83 and an initial restriction taken. The vehicle then began dust operations behind a lead vehicle, pulling off to the side of the course every 15 minutes to take restriction readings. All restriction readings were taken in second gear at 4000 rpm while accelerating (maximum air demand). After a restriction of 24 inches water was attained, the air cleaner was removed, and the unserviced upper and lower elements were individually weighed in the same manner as before. The lower element was disassembled and thoroughly cleaned in a solvent bath, while the upper element was shaken, but not washed, to clean. The air cleaner was reassembled, weighed and reinstalled on the vehicle. A restriction reading was taken to compare with initial restriction data. Air leakage tests were conducted both before and after the dust operation by covering the air intake to the air cleaner while the engine was idling to determine if stalling would result. ## 2.5.4 Results 2.5.4.1 Normal Dust Conditions. The original air cleaners installed in the vehicles were not airtight and were leaking dust into the engines. New assemblies were obtained and installed. No additional dust leakage was observed during the remainder of the test. Service to the air cleaner under normal dust conditions was not required more frequently than the 1000-mile interval specified in the vehicle lubrication order. An inspection of the vehicles not involved in the extreme dust tests at the end of durability-reliability operation revealed no detrimental effects of dust to any component. Traces of dust were found in the combustion chamber of U81, but the valves and cylinder walls were in excellent condition. 2.5.4.2 Extreme Dust Condition. The air cleaner reached maximum restriction after 3.75 hours of operation in extreme dust. The air cleaner component weights before and after test are presented in Table 12. TABLE 12. Air Cleaner Dust Capacity | | Weight
Quantity | | | | |----------------|--------------------|----------------------|----------------|--------------------| | Component | Before
Test | After
<u>Test</u> | Collected (gm) | After
Servicing | | Upper element | 1215 | 1340 | 125 | 1280 | | Lower element | 36 30 | 6865 | 3235 | 3760 | | Total assembly | 4845 | 8205 | 3360 | 5040 | The plot of restriction versus time is presented in Figure 1. Detailed data are included in Table 1 of Appendix I.6. The quantity of dust that the air cleaner failed to remove could not be accurately determined since an absolute filter was not used. The engine was damaged by dust ingestion during this short period of operation as indicated by a loss of engine compression as shown in Table 13. TABLE 13. Engine Compression Before and After Dust Test | | Compression (psi) | | | |----------------|-------------------|------------|--| | | Before Test | After Test | | | Cylinder No. 1 | 120 | 75 | | | Cylinder No. 2 | 115 | 95 | | | Cylinder No. 3 | 115 | 105 | | | Cylinder No. 4 | 120 | 75 | | Dust deposits were also observed on the electrodes of all four spark plugs. The inside air duct hose from the air cleaner to the carburetor was covered with dust and a sample was analyzed to determine the size of the particles that were being ingested into the engine. A graph of the distribution by size of these particles is shown in Figure 2. Detailed data are presented in Table 2 of Appendix I.6. The upper wire mesh element was saturated with dry dust (Fig. 4 and $5_{\,\mathrm{s}}$ App I.9). As a result of the extensive residues in the lower element, it had to be removed from the vehicle for cleaning. Total removal, cleaning, and installation time was approximately 55 minutes. There was no air leakage observed during the stall tests conducted before and after operation in extreme dust. FIGURE 1. AIR CLEANER RESTRICTION CHARACTERISTICS DURING DUST TESTS, VEHICLE NO. 02DU8370, 27 JUNE 70. SIZE OF DUST PARTICLES IN INTAKE AIR DUCT HOSE, DISTRIBUTION BY PARTICLE 5. FIGURE During the post-test inspection it was also observed that the inside of the distributor was covered with dust. There was no liquid oil left in the oil cup, only oil wetted dust. #### 2.5.5 Analysis 2.5.5.1 Assembly Problem. Apparently the vendor of the air cleaner was matching upper and lower canister elements to provide an airtight seal for the air pressure acceptance testing. The contractor was not retaining the match during his assembly, however, so that a different top and bottom were being installed on the vehicle. The assembly method was changed by the contractor to retain matched pieces, and new air cleaners were shipped and installed. The change in assembly methods resulted in a significant improvement in air cleaner effectiveness for normal dust operation. 2.5.5.2 Air cleaner Functioning. Military Standard MIL-A-13488A(Ord) specifies a test of 24 inches of water to determine dust capacity. The extreme dust test was run to simulate the laboratory test condition. The lack of oil in the cleaner at the end of test indicates that the air cleaner had ceased to function properly sometime before the 24-inch restriction was attained, and unfiltered air was entering the engine. The oil level was such that oil was lost by being "pulled over" into the engine. The restriction versus time graph in Figure 1 indicates the possibility that the air cleaner probably lost its effectiveness after 2.5 hours of operation at a restriction of 11 inches of water, as evidenced by the rapid rate of rise after that point. The post-test servicing required removal of the air cleaner chamber from the vehicle, rather than the oil cup and filter element alone. These observations indicate that the service interval during extreme dust operation would actually be about 2-1/2 hours. Dust tests during initial production and inspection
comparison tests of the M151Al truck produced results similar to those experienced in this test, i.e., oil pullover, channelling of airflow, and dust ingestion into the engine with severe damage to the engine after periods of operation as short as 1 hour in extreme dust conditions. Product improvement tests of a dry-type air cleaner for the M151Al truck conducted at Yuma Proving Ground (Ref 14, App V) indicated improved filtering with reduced engine wear and in addition provides "fail-safe" protection to the engine in the event that the dust capacity is exceeded. #### 2.6 TOXIC HAZARD TEST ## 2.6.1 Objective To identify hazardous carbon monoxide concentrations in the personnel compartment of the vehicle. #### 2.6.2 Criteria While in the cruise condition the maximum carbon monoxide concentration in any occupied part of the vehicle shall not exceed 0.005 percent (Ref MTP 2-2-614). #### 2.6.3 Method The vehicle was operated on a figure 8 paved course at approximately 25 mph without side curtains, but with top installed. Air samples were then taken with a Saf-Co-Meter carbon monoxide tester (manufactured by Mine Safety Appliance Co., PN 47113) at each crew member position. The procedure was repeated at 15 mph. # 2.6.4 Results There was no perceptible concentration of carbon monoxide at any crew member position. # 2.6.5 Analysis The vehicle met the toxic hazard criteria. #### 2.7 MAINTAINABILITY #### 2.7.1 Objective To determine the maintainability of the vehicle when operated over the test courses. # 2.7.2 Criteria Failure of either test vehicle to comply with any of the requirements specified or any deficiency of workmanship of materials nature during or as a result of the 20,000-mile test, shall be cause for rejection of the vehicle. Further, the government may refuse to continue acceptance of production vehicles until evidence has been provided by the contractor that corrective action has been taken to eliminate the deficiency. Any deficiency found during or as a result of 20,000-mile test shall be prima facie evidence that all vehicles already accepted prior to completion of the 20,000-mile test are similarly deficient unless evidence satisfactory to the government is furnished by the contractor that they are not similarly deficient. Such deficiencies on all vehicles shall be corrected by the contractor at no cost to the government regardless of location. #### 2.7.3 Method A maintenance evaluation, in accordance with USATECOM Regulation 750-15, was conducted throughout the initial production tests. The amount, frequency and level of maintenance required was recorded. A record of the amount of operation and maintenance during each shift was kept. Where more than one type of maintenance was required, a separate job was shown for each type. Throughout the test, maintenance instructions in the technical manuals and manuscripts, maintenance charts, and lubrication orders were analyzed for adequacy at the intended maintenance level. The adequacy of the tools and the need for special training were also recorded. # 2.7.4 Results A summary of maintainability data is presented in Table 14. TABLE 14. Maintainability Data Summary | | <u>U81</u> | <u>U83</u> | <u>U86</u> | Total | |--|------------|------------|------------|--------| | Test miles | 21025 | 21048 | 21091 | 63164 | | Actual operating hours | 857.2 | 940.9 | 872.0 | 2670.1 | | Maintenance man-hours | 108.9 | 104.3 | 116.2 | 329.4 | | Active maintenance downtime | 79.0 | 74.6 | 78.0 | 231.6 | | Scheduled maintenance hours | 54.9 | 55.2 | 69.1 | 179.0 | | Unscheduled maintenance hours | 54.0 | 49.1 | 47.1 | 150.4 | | Scheduled maintenance actions | 17 | 21 | 23 | 61 | | Unscheduled maintenance actions | 35 | 23 | 37 | 95 | | Total chargeable component failures | 58 | 38 | 49 | 145 | | Operating hours (assuming utilization of 20 mph) | 1051.2 | 1052.4 | 1054.6 | 3158.2 | Maintenance indicies derived from the data in Table 14 are shown in Table 15. TABLE 15. Maintainability Indicies* | | <u>U81</u> | <u>U83</u> | <u>U86</u> | <u>Total</u> | |---|------------|------------|------------|--------------| | Average speed (mph) | 24.5 | 22.3 | 24.2 | 23.7 | | Mean time between maintenance (hr) | 16.5 | 21.4 | 14.5 | 17.1 | | Mean miles between maintenance (mi) | 404.3 | 478.4 | 351.5 | 404.9 | | Mean active maintenance downtime (hr) | 1.5 | 1.7 | 1.2 | 1.5 | | Maintenance ratio (%) MMH/actual operating hr | 12.7 | 11.1 | 13.3 | 12.3 | | Achieved availability (%) | 91.6 | 92.6 | 92.7 | 92.0 | | Maintenance ratio, MMH/operating hr (assuming avg speed of 20 mph)(%) | 10.4 | 9.9 | 11.0 | 10.4 | | Maintenance ratio criteria, (less than) | - | - | - | 7.0 | ^{*}For definitions, see USATECOM Regulation 750-15 The manuals and tools were generally adequate. However, the specification for the torque on the wheel lifting eye and locking nut is not included in the maintenance manual. No special training was required. The vehicles met the maintainability criteria. # 2.8 DURABILITY AND RELIABILITY #### 2.8.1 Objective To determine component reliability and general durability of the vehicle when operated over the test courses. ## 2.8.2 Criteria Failure of any test vehicle to comply with any of the requirements specified or any deficiency of workmanship of materials nature during or as a result of the 20,000-mile test, shall be cause for rejection of the vehicle. Further, the government may refuse to continue acceptance of production vehicles until evidence has been provided by the contractor that corrective action has been taken to eliminate the deficiency. Any deficiency found during or as a result of 20,000-mile test shall be prima facie evidence that all vehicles already accepted prior to completion of the 20,000-mile test are similarly dificient unless evidence satisfactory to the government is furnished by the contractor that they are not similarly deficient. Such deficiencies on all vehicles shall be corrected by the contractor at no cost to the government regardless of location. # 2.8.3 Method Subsequent to a 1000-mile break-in operation, the vehicle underwent durability cycles consisting of the following: | Course | <u>Miles</u> | |---------------------------------|--------------| | Paved | 750 | | Level cross-country | 500 | | Hilly cross-country | 500 | | Secondary road (gravel) | 350 | | Winding secondard road (gravel) | 325 | | Belgian block (equivalent) | 75 | | Total | 2500 | The vehicles completed eight cycles of 2500 miles each, for a total of 20,000 miles over the durability test courses. For highway operation the payload was 1200 pounds and trailed load was 1300 pounds. For secondary roads and cross-country the payload was 800 pounds and the trailed load was 1000 pounds. The trailed load was towed approximately 50 percent of the miles on each course. At least 1000 miles of operation were to be made with the front axle drive engaged, preferably when marginal traction conditions existed. Scheduled organizational maintenance was performed in accordance with the maintenance directive. This included servicing, preventive maintenance, and adjustments prescribed therein. The vehicles were given a thorough visual and functional inspection. Teardown on one differential and one transmission was accomplished, and the cylinder head was removed from one engine. Observations on wear, corrosion and loss of adjustment were made and recorded. #### 2.8.4 Results A summary of mileage accumulated by test course is presented in Table 16. TABLE 16. Summary of Course Operation (mi)* | | Ve | ehicle | | |----------------------------|-------|------------|-------| | Test Course | U81_ | <u>U83</u> | U86 | | n 1 | | | | | Paved | | | | | with trailer | 3001 | 3010 | 3003 | | without trailer | 3000 | 3008 | 3018 | | Level cross-country | | | | | with trailer | 2000 | 2001 | 2005 | | without trailer | 2010 | 2005 | 2003 | | Hilly cross-country | | | | | with trailer | 2000 | 2009 | 2016 | | without trailer | 2005 | 2007 | 2007 | | Straight secondary | | | | | with trailer | 1400 | 1407 | 1400 | | without trailer | 1406 | 1400 | 1410 | | Winding secondary | | | | | with trailer | 1300 | 1300 | 1305 | | without trailer | 1303 | 1300 | 1307 | | Belgian block equivalent | | | | | with trailer | 300 | 300 | 305 | | without trailer | 300 | 303 | 300 | | Break-in (without trailer) | 1001 | 998 | 1012 | | | | | | | Total with trailer | 10001 | 10027 | 10034 | | Total without trailer | 10023 | 10023 | 10045 | | Total accumulated mileage | 21025 | 21048 | 21091 | NOTE: At least 1500 miles, both with and without trailer, was run in 4-wheel drive by each vehicle on hilly and level cross-country courses. ^{*}All mileages are higher than actual because the odometers of all vehicles were reading high by 6 to 8 percent (see App III, Sec 2, Group 47). A summary of fuel consumption by test course is presented in Table 17. TABLE 17. Fuel Consumption by Test Course* | Test Course | | Consumption | | |----------------------------|------------|-------------|------------| | Test Course | <u>U81</u> | <u>U83</u> | <u>U86</u> | | Paved | | | | | with trailer | 16.0 | 15.2 | | | without trailer | 18.7 | 18.5 | 16.6 | | Level cross-country | | | -0.0 | | with trailer | 13.9 | 13.2 | 13.0 | | without trailer | 13.7 | 15.4 | 12.9 | | Hilly cross-country | | | | | with trailer | 11.4 | 11.8 | 11.9 | | without trailer | 13.4 | 14.0 | 13.5 | | Straight secondary | | | 43.3 | | with trailer | 17.8 | 15.9 | 15.6 | | without trailer | 17.3 | 17.7 | 20.1 | | Winding secondary | | _,,, | 2011 | | with trailer | 14.4 | 15.4 | 15.5 | | without trailer | 16.8 | 17.5 | 17.8 | | Belgian block (equivalent) | | | 27.0 | | with trailer | 14.6 | 16.6 | 13.3 | | without trailer | 19.5 | 21.4 | 14.2 | | | | | 14.2 | | Total with trailer | 14.5 | 14.1 | 14.1 | | Total without trailer | 15.9 | 16.4 | 15.5 | | | | ∪ • T | ر.رــ |
 Total overall | 15.1 | 15.1 | 14.8 | *Fuel (and oil) consumption figures have not been corrected for the 6 to 8 percent odometer error. The oil consumption of U81 was 4205 miles per quart, U83 was 4210 miles per quart, and U86 was 3515 miles per quart. Oil samples were taken from all reservoirs during each 6000-mile maintenance. The analyses are presented as Appendix I.3. There were two deficiencies observed during durability-reliability operation. A rear yoke on the propeller shaft of vehicle U81 broke at 17,170 miles, diasbling the vehicle. This was the only mission failure observed during the test, and it required two men 1.5 hours to make the necessary repairs. All vehicles experienced extensive brake pulling (uneven application) to the left or right after 12,000 to 15,000 miles had been accumulated. For complete information on these deficiencies, see Appendix III, Section 1, Deficiencies. Of the 28 shortcomings reported, 25 were discovered during durability-reliability operations. All shortcomings are presented in Section 2, Shortcomings, of Appendix III. The most important are summarized below, with the reference relating to the standard government group under which the shortcoming is located in Appendix III. - a. There were three incidents of broken radio interference suppression wire mesh insulations on spark plug leads (Group 06). - b. Ignition coil retaining tabs broke on vehicle U83. The retaining tab fasteners came loose on vehicles U81 and U83 (Group 06). - c. Four turn signal control assemblies failed for mechanical or electrical reasons (Group 06). - d. At the end of test on vehicle U81, the right output roller bearing and race in the rear differential were considered unserviceable (Group 11) (Fig. 1, App I.9). - e. There were 13 tire inner tube failures due to separation at the seam (Group 13). - f. The bushings in the front upper and lower A-frame control arms were badly worn on all vehicles (Fig. 3, App I.9). Problem was discovered about 17,500 test miles (Group 13). - g. Six shock absorbers were replaced (Group 16). - h. The odometers of all vehicles were found to be reading higher mileage than actual by 6 to 8 percent (Group 47). The results of the limited engine teardown on U81 to check for dust damage are included in Section 2.5.4. Detailed results of the final inspection are presented in Appendix I.10. The most important observations are summarized below: - a. A hole was discovered at a spot weld in the air cleaner oil cup (see App III, Sec 2, Group 3). - b. The disassembled transmission from vehicle U81 was in good condition. - c. The front suspension upper ball joint boots were cracked on all vehicles. - d. U81 had a castor of -1 1/2° on the left front wheel. U86 had -3/4° and +2° castor angles on the front wheels. - e. U83 had 0° and -1/2° camber and U86 had -1 1/2° and -1 3/4° camber. - f. U83 had a swing arc of 32° on the left wheel. - g. The toe-in measurements for U81, U83 and U86 were $\pm 1/2$ inch, $\pm 5/8$ inch and $\pm 3/8$ inch, respectively. - h. The disassembled rear differential had spalled rollers in the right output roller bearing (Fig. 1, App I.9). The bearing and race were considered unserviceable (see App III, Sec 2, Group 11). - i. All vehicles pulled to the left or right while braking during pre-inspection road tests (Para. 2.9.4 and 2.9.5). - j. The rear brake cylinders and pistons in U81 were found to be in good condition. One front cylinder had a trace of rust. The pistons were tarnished and their skirts were slightly rough. The front boots had cuts occurring where they roll back over the piston skirt. - k. The front brake cylinders from U86 were also torn down and inspected. The cylinder, pistons and boots were all in good condition. ## 2.8.5 Analysis The specified durability mileage (20,000) was not completed by 1200 to 1600 miles because of the odometer errors in all vehicles. The vehicles had an advantage because the test was shortened. For example, the rear differential could have failed over that period because of the spalled bearings found during final inspection, and would have thereby been classified as a deficiency. The overall fuel consumptions of the three vehicles were within 0.3 mile/gallon of each other. The fuel consumption inconsistencies for any given course, such as level cross-country, are the result of varying driver habits, and inaccuracies in fuel usage per course reporting. These factors tend to balance out over all of the courses, resulting in consistant overall figures. The broken yoke on the propeller shaft was classified as a deficiency because the vehicle was disabled. The brake pulling, although not a serious hazard on YPG's dry pavement and gravel courses, would be extremely dangerous on wet or icy roads. This safety hazard is the basis for deficiency classification. The single mission failure over the 63,164 miles and 2,670 hours accumulated by all three vehicles results in the reliability figures shown in Table 18. Repair of the failure took 1.5 hours, thus the mean-time-to-repair figure is 1.5 hours/failure. TABLE 18. Reliability Data | | Confiden | ce Level | |--|---------------|---------------| | | 90 Percent | 95 Percent | | 75-mile mission reliability Mean time between failures at 20 mph | .995
809.9 | .994
664.0 | | utilization
Mean miles between failure | 16197 | 13280 | Although the worn A-frame control arm bushings were not discovered until about 17,500 test miles, it is likely that the problem had existed for several thousand miles. It had been theorized that the excessive negative camber (up to -5° on one vehicle) resulting from the worn bushings was responsible for the brake pulling problems which began between 12,000 and 15,000 miles. Two vehicles were shimmed back into correct camber, but the problem persisted. By the end of test, all vehicles had shims in the front control arms in excess of 5/8 inch. The result of this excessive negative camber was very poor tire wear. The lack of a torque specification for the wheel lifting eye is particularly important because insufficient torque on the eye can result in water leakage into the hub during fording, even if the self-locking nut is tight. The hole in the air cleaner oil cup resulted in a loss of about one-third of the oil in the cup, and thereby significantly reduced the effectiveness of the cleaner. The problem was not classified as a deficiency because some degree of filtering was occurring. Since the steering arm ball joints are lubricated for life at the time of manufacture the cracks in the ball joint boots could result in damage to the joints by allowing dust contamination of the grease. Even though all vehicles had in excess of 5/8 inch of shims because of the worn control arm bushings at the end of test, only U81 was within camber specifications. All vehicles were either above or below toe-in specifications by 11/32 to 15/32 inch. Vehicles U81 and U83 were castor specifications by 1/4 to 1-1/2 degrees. The purpose of correct castor, camber and toe-in is to provide good handling and ride characteristics, optimum tire wear, and to minimize stresses on the front suspension. The failure of the vehicles to meet these specifications is correspondingly detrimental to those characteristics. The cramping angle on the left wheel of vehicle U83 was 1 degree in excess of specifications. Cramping angles in excess of the specification can cause damage to the steering gear. It is probable that the spalled roller bearings in the rear differential of vehicle U81 would have resulted in a differential failure within another 1000 miles. ## 2.9 SAFETY EVALUATION AND VEHICLE STABILITY ## 2.9.1 Objective - a. To determine if any safety hazards exist - b. To test and evaluate the effect of the trailing arm suspension on vehicle stability, maneuverability, steering, ease of handling and riding characteristics. ## 2.9.2 Criteria USATECOM Regulation 385-6. ### 2.9.3 Method Throughout all testing, observations were made with respect to difficulties experienced in operation of the test vehicles and safety hazards encountered. Eleven persons were used to test the stability, handling and ride characteristics of one of the M151A2 test vehicles which had accumulated approximately 5000 test miles against an M151A1 which had undergone a 4000-mile inspection comparison test. Test personnel consisted of regular drivers, as well as project engineers who had been previously been involved with M151A1 testing. The test course was a composite of five individual test courses, consisting of sections of the hilly cross-country, level cross-country and winding gravel course. In addition, one course was laid out in a dry wash to emphasize maneuvering characteristics, and another consisted of a paved figure 8 around a two-block area. All courses were run without a trailer and in addition, the paved and level cross-country courses were negotiated with a trailer. A questionnaire as contained in Appendix I.10 was completed by each driver at the end of each run. A summary of these driver comments is contained in Paragraph 2.9.4.2. #### 2.9.4 Results 2.9.4.1 Brake Problems. All vehicles encountered braking problems in the form of a pull or uneven application to the left or right after completing 12,000 to 15,000 miles of durability operation. The brake shoes were sanded, cleaned with a variety of cleaners, and replaced. Drums were checked for concentricity, and drum-to-shoe clearance was measured. Brake cylinders were removed and examined. The negative front wheel camber, resulting from worn A-frame control arm bushings, was corrected by shimming to determine if it was a contributing factor. None of these efforts provided a complete answer to the problem and further investigation was undertaken after the final inspections had been completed. In this effort one factor at a time was checked on a vehicle exhibiting brake pulling
characteristics. For example the front brake shoes were replaced. The pulling persisted so the original shoes were reinstalled. By this process of elimination, the problem was isolated to the wheel cylinder. All front wheel cylinder boots had small cuts resulting from metal burrs which had not been removed from the rear of the piston skirts. These cuts allowed dust and moisture to contaminate the cylinders, thereby hindering their operation. Detailed results are shown in the Final Inspection Data in Appendix I.8, Group 12. - 2.9.4.2 Safety and Handling Evaluation Without Trailer. - a. <u>Hilly Cross-Country</u>. This course consisted of very uneven virgin terrain and steep, washboarded gravel roads which were traversed at 5 to 15 mph. The M151Al pitched more over the virgin terrain as the vehicle traversed the abrupt rises and depressions, and it "walked" slightly sideways on the washboarded hills. The former occurrence was somewhat disconcerting to many of the drivers. The M151A2 exhibited neither of these characteristics. Over all courses the drivers preferred the larger grip and smaller diameter of the M151A2 steering wheel. - b. Level Cross-Country. This course consisted of winding, bumpy roads covered with loose gravel and sand. It was one of the more revealing courses in terms of comparison because of the high speeds attained (15 to 45 mph). The M151A2 provided a more positive feeling of stability and control for three principal reasons. First, when the M151A2 was set into a turn, it would track perfectly without wandering or trying to break away. At the same speeds the M151A1 would consistently slide, with the rear end sliding to the outside of the turn. Second, at these higher speeds over washboarded roads, the drivers did not feel that the M151A1 was making secure contact with the road. A few described it as a feeling of being partially airborne. Finally, over very bumpy portions of the course, the rear end of the M151A1 tended to hop, instead of hugging the road as the M151A2 did. This was deemed particularly dangerous when a large bump was encountered during, or immediately prior, to a turn. It should be noted that this was the only test course over which the drivers preferred the ride of the M151Al. This may be due in part to a weak suspension in the particular M151A2 vehicle used (U86) causing it to "bottom out." Later, it was found that U86 had front springs 1/4 inch shorter than specification. c. Gravel Road, Winding. This course was run at slower speeds (15 to 35 mph) than normal to determine if a difference could be detected between the vehicles when they were driven well below critical stability limits. The concensus was that the M151A2 still gave a greater feeling of confidence. - d. Dry Wash. This was a test of manuvering over virgin, sandy terrain. Drivers found that there was excessive feedback to the steering wheels of both vehicles, but because the steering wheel in the M151A2 was smaller, the overall effect was worse in the M151A2. The oversteer characteristics of the M151A1 were advantageous in negotiating sharp turns in the soft sand, but the overall stability and ride in the M151A2 somewhat balanced these overall evaluations. - e. Paved Figure 8. In the turns around the paved figure 8 course, the M151A2 was felt to have greater adhesion to the road, giving a feeling of much greater stability. The M151A2 leaned much more than the M151A1. The M151A1 did not lean, but the front end oversteered and the rear end seemed to want to slide. The result was that the M151A1 tires started to squeal through many of the turns while the M151A2 tires did not. The brakes on the M151A1 were very hard requiring much more effort than those on the M151A2. Course speeds were 15 to 25 mph. - 2.9.4.3 Safety and Handling Evaluation with Trailer. The drivers indicated that no comparative differences in stability and handling with or without the trailers were evident. ## 2.9.5 Analysis The brake pulling was never serious enough to be considered a severe safety hazard on the dry pavement and gravel courses. However, such a condition could definitely be dangerous on wet or icy roads and was therefore classified as a deficiency. The modified steering wheel and rear suspension have resulted in a greater stability, easier handling and more control over all types of terrain. The drivers higher confidence in the M151A2 was due to the leaning of the vehicle which indicated how fast they were negotiating a turn. The M151A1 does not have such a pronounced indicator and can break away or slide out unexpectedly, thus reducing the confidence in it. The leaning of the M151A2, then, is a definite advantage regarding safety of operation. 0 Э Ø J ## APPENDIX I.1. RECEIVING INSPECTION | Item: Truck, Utility, 1/4-Ton, | 1/4-Ton, 4x4, M151A2 | Date Received: 1 April 1970
Shipper: ONC Hopper Truck L
Tractor No. 1543;
No. 20-7572 | wed: 1 April 1970
ONC Hopper Truck Lines
Tractor No. 1543; Trailer
No. 20-7572 | |--|------------------------------------|--|---| | USA Reg No.
Serial No.
Odometer reading | 02DU8170
24573
13.0 | 02DU8370
24575
12.9 | 02DU8670
24578
13.1 | | Vehicle blocking | In rear and front | In rear and front | In rear and front | | Vehicle anchoring
Damage due to lifting or
rigging | None
None | None
None | wneels
None
None | | Evidence of shock
Seals of openings | None
In fruck wan | None
In twick non | None | | Exposed metal coverings
Locks: closed, locked, or | In truck van
Seal not fastened | in truck van
In truck van
Seal not fastened | in truck van
In truck van
Seal not fastened | | sealed
Vehicle cover | In truck van | In truck van | In truck van | | OVE anchor and blocking | Strapped in rear | Strapped in rear | Strapped in rear | | OVE security and marking Oil or grease seal leaks | Adequate | Adequate
None | Seac
Adequate
None | | Battery disconnected | No | No. Switch on;
battery dead | Yes | | General appearance
Maintenance package publication | New - good condition
In vehicle | New
In vehicle | New - good condition
In vehicle | APPENDIX I.2. INITIAL TECHNICAL INSPECTION | | | US | SA Registration | n No. | |---------------------------|----------|------------|-----------------|----------| | | | 02DU8170 | 02DU8370 | 02DU8670 | | | | | | | | SNI | Group: (| 01, Engine | | | | Idle speed (rpm) | | 525 | 450 | 600 | | Manifold vac at idle | | 20 | 21.5 | 21 | | | | | | | | | Engine | | | | | | Speed | | | | | | (rpm) | _ | | | | Oil pressure (psi) at: | Idle | 36 | 40 | 38 | | All oil pressures were | 1000 | 40 | 44 | 41 | | taken at operating tem- | 1500 | 42 | 45 | 42 | | perature. Specification | 2000 | 43 | 45 | 45 | | is 35-45 psi at oper- | 3000 | 46 | 49 | 48 | | ating speed | 4000 | 48 | 51 | 51 | | ucing opecu | 4000 | 40 | J1 | <i>)</i> | | | Cylinder | • | | | | | No. | | | | | | | - | | | | Compression (psi) during | 1 | 115 | 125 | 125 | | cranking at approximately | 2 | 122 | 132 | 130 | | 230 rpm. Specification is | 3 | 124 | 132 | 130 | | 135-145 psi. | 4 | 130 | 130 | 130 | | | | | | | | Spark plug gap (in.) | 1 | 0.030 | 0.032 | 0.030 | | Specification is 0.029 | 2 | 0.035 | 0.032 | 0.025 | | to 0.032 inch. | 3 | 0.033 | 0.032 | 0.027 | | | 4 | 0.035 | 0.032 | 0.025 | All other engine components met the necessary specification requirements. SNL Group: 02, Clutch Satisfactory SNL Group: 03, Fuel System Fuel pressure (psig) 4.75 5 Specification is 5-6 psig SNL Group: 04, Exhaust System Satisfactory | US | SA Registration | No. | |----------|-----------------|----------| | 02DU8170 | 02DU8370 | 02DU8670 | SNL Group: 05, Cooling system Satisfacto SNL Group: 06, Electrical System Headlight adjustments (in.) Specification is 0 inch right, 5 inches down | Left | Right | Left | Right | Left | Right | |------|---------|---------|---------|------|-------| | 5 L | 5-1/2 D | 2-1/2 L | 5-1/2 L | 7 L | 7 L | | 7 D | 9 D | 2-1/2 D | 10 D | 10 D | 10 D | | | L = lef | t | D = d | .own | | The electrical Headlamp and parking lamp wiring was poorly secured on all vehicles. Lead to the oil pressure transmitter was too long. cable from the starter foot switch was rubbing against the throttle linkage, thereby interfering with the throttle return. The loop in the cable which should clear the linkage had not been installed high enough to prevent contact. SNL Groups: 07, 08 and 09 All items were satisfactory on all vehicles. SNL Group: 10, Front Axle Specifications for Left Right Left Right Left Right steering geometry are as follows: Caster, $-1/2^{\circ}$ to $+1/2^{\circ}$ 1/4° 3/4° 0° 0° Camber, $1/2^{\circ}$ to $1-1/2^{\circ}$ 1° 0° 1° 1° 1° ٥° Toe-in, 1/8 inch 5/8 in. 5/8 in. 19/32 in. 19/32 in. 3/4 in. 3/4 in. Swing arc, 31° 31° 31° 31° 30° 30° All measurements were made on the vehicle without payload. | USA | Registration 1 | No 。 | |------------------|----------------|----------| | 02DU817 0 | 02DU8370 | 02DU8670 | SNL Groups: 11 through 18 All items were satisfactory on all vehicles. SNL Group: 22, Miscellaneous Body, Cab, Chassis, Hull and Accessories The modified top with full view rear window was not received. The inside rearview mirror was not received with any vehicles. | PROJECT ENGINEER Shoemaker Vehicles Date Sample No. Sample No. Sample Source Obometer Engine Obometer Engine Obometer Engine Obometer Challe Specification MIL- TESTS API Gravity Corrosion (ASTM No.) FLASH Point (F) Sediment (I) Water (I) Water (I) Sulfateo Ash (I) Sulfateo Ash (I) Kinematic Viscosity (cs) | Арг. С. М. 151 Д2. Арг. 70. 24 Арг. 70. 2265 19. 10. 6001.0 25. 8 21.2 25. 8 21.2 400 400 3.89 1.22 1.22 | 14
Ma
20-23
120-1
120-1
150-23
150-23
150-23
172 | USA Rec. 5 Jun 70 70=2464 Engine 16942.1 20.5 20.5 390 5.38 3.80 | No.OZDURI70
1 Jul 70
70-2671
Engine
21058
23.3
1B+
405
23.1
1 Jul 70
23.3
1 Jul 70
23.3
1 Jul 70
1 Jul 70
2 | WORK ORDER No. | 0850 | |---|---|---|---|--|----------------|------| | E SOURCE TER TER HOURS ST ICATION MIL— SGRAVITY SSION (ASTM No.) H POINT (F) H POINT (F) ATTEO ASH (7) AATTE VISCOSITY (CS) AATTE VISCOSITY (CS) AATTE VISCOSITY (CS) | 198 70–2
ne Eng
600
600
600
11 | 114 May
20-2367
Engine
12010
16-9
420
420
420
112-1 | 5 Jun 70
70-2464
Engine
16942.1
20.5
390
5.38
3.80 | 1 Jul 70
70-2671
Engine
21058
23.3
1B+
405
2.11
1.79 | | | | E SOURCE TER HOURS CT GRAVITY OSION (ASTM No.) H POINT (F) H POINT (F) ARESIDUE (T) AREC ASH (T) AATIC VISCOSITY (CS) A0PF | 198 70–2
ne Eng
600
8 21
3 3
11 | 20–236'
Engine
12010,
16.9
16.9
420
420
420
112.1 | 70-24.64,
Engine
1694.2.1
20.5
390
5.38
3.80 | 70-2671 Engine 21058 23.3 18+ 405 2.11 2.11 1.79 | | | | E SOURCE TER HOURS CT ICATION MIL- SGRAVITY OSION (ASTM No.) H POINT (F) H POINT (F) MENT (X) ON RESIDUE (X) ATTEO ASH (X) AATTE VISCOSITY (CS) AAOF | eu 8 00 | Engine
12010
16.9
420
5.54
5.93
112.1 | Engine
16942.1
20.5
390
5.38
3.80 | Engine
21058
23.3
18+
405
2.11
1.79 | | | | HOURS TEATION MIL- S GRAVITY OSION (ASTM No.) H POINT (F) H POINT (F) MENT (R) ON RESIDUE (R) ATEO ASH (R) AATEO VISCOSITY (CS) AAOF | ω | 12010
16.9
420
5.54
5.93
112.1 | 169/2.1
20.5
390
5.38
3.80 | 23.3
23.3
1B+
405
2.11
2.11
1.79 | | | | HOURS ICATION MIL- S GRAVITY OSION (ASTM No.) H POINT (F) H POINT (F) AENT (X) ALEO ASH (X) AATIC VISCOSITY (CS) AOF | ω ορ | 16.9
420
5.54
3:93 | 20.5
390
5.38
3.80 | 23.3
1B+
405
2.11
2.11
1.79 | | | | GRAVITY OSION (ASTM No.) H POINT (F) AENT (7) N RESIDUE (7) ATEO ASH (7) AATIC VISCOSITY (CS) A0P | | 16.
3.9
3.9 | 20.5
390
5.38
3.80 | 23.3
1B+
405
2.11
1.79 | | | | GRAVITY OSION (ASTM No.) H POINT (F) AENT (Z) ON RESIDUE (Z) ATEO ASH (Z) AATIC VISCOSITY (CS) AOF | | 16.
5.5
3.9 | 20.5
390
5.38
3.80 | 23.3
1B+
405
2.11
1.79 | | | | GRAVITY OSION (ASTM No.) H POINT (F) NENT (X) ON RESIDUE (X) ATEO ASH (X) AATIC VISCOSITY (CS) A0P | | 16.
5.5
3.9 | 20.5
390
5.38
3.80 | 23.3
1B+
405
2.11
1.79 | | | | STM No.) (°F)) bue (%) sh (%) iscosity (cs) | | 112 | 20.5
390
5.38
3.80 | 23.3
1B+
405
405
2.11
1.79
110.5 | | | | AVITY ON (ASTM No.) L. (T.) T. (T.) (T.) RESIDUE (T.) O ASH (T.) IC VISCOSITY (CS.) OF | | 16.
5.5
3.9
11.2 | 20.5
390
5.38
3.80 | 23.3
1B+
405
405
2.11
1.79
110.5 | | | | ON (ASTM No.) DOINT ("F) T (1) (2) RESIDUE (1) O ASH (1) IC VISCOSITY (CS) OF | | 5.5
3.9
112 | 390
5.38
3.80 | 1B+
405
2•11
1•79
110.5 | | | | T (7) T (7) (2) Residue (7) O Ash (7) IC VISCOSITY (1) OF | | 3:9 | 390
5.38
3.80 | 405
2.11
1.79
110.5 | | | | T (%) (%) RESIDUE (%) O ASH (%) IC VISCOSITY () OF | | 3:9 | 5.38 3.80 | 2.11
1.79
110.5 | | | | RESIDUE (%) O ASH (%) IC VISCOSITY () OF | | 3:9 | 5.38
3.80
107.0 | 2.11 1.79 110.5 | | | | RESIDUE (%) CO ASH (%) CO ASH (%) | | 3:9 | 5.38
3.80
107.0 | 2.11 1.79 110.5 | | | | IC VISCOSITY (C) | | 3.9 | 3.80 | 1.79 | | | | Viscosity (| | 112 | 107.0 | 110.5 | | | | 1. | | 112 | 107.0 | 110.5 | | | | 1 | | 112 | 107.0 | 110.5 | | | | ±₀0 | | 112 | 107.0 | 110.5 | | | | 8 | | - | -
>•
-
- | | | | | AT 210°F 9.59 | | _ | 10.58 | 10.34 | | | | VISCOSITY INDEX | 78 | | 87 | 79 | | | | INSOLUBLES | 4•59 | | 68°5 | र्ग8 ° 0 | | | | an l | 3.42 | 0.11 | 5.61 | 94.0 | | | | SPECTROGRAPHIC ANALYSIS (PPM) | | | | | | | | Агимими | 12 | 19 | 6 | 5 | | | | Inon 14 | 89 | | 105 | 38 | | | | NO | | | 2 | 0 | | | | Соррея | 110 | 15 | 8 | 9 | | | | Снеоміци | 9 | 9 | 16 | 3 | | | | XXXX Magnesium | | | 2 | 2 | | | | O | 400 <u>(</u> | 4100 | 2900 | 1535 | | | | Τıχ | | | | | | | | | | | | | | | | SILVER | 0 | 0 | 0 | 0. | | | | FOAM TEST | | | | | | | | SEG, I (ML,) | | | | | | | | - 1 | | | | | | | | | | | | | | | | Pour Fuel Diluction % | 9 | | * | | | | | SHARKSI | 2 | 7. | 2 | ₩• 1 | | | | PROJECT ENGINEER Shoemaker | VEHIC | OIL ANALYSIS | | SUMMARY
USA Rec. | No. 02DU817 | No. O2DU8170 WORK ORDER NO. | 0850 | | |--|----------|-----------------|-----------|---------------------|---|-----------------------------|--|------| | 11 | 4 Apr 70 | 24 Apr 70 | 14 May 70 | | 1
Jul 70 | | | | | SAMPLE NO. | 2 | 70-2266 | ľ | 70-2506 | 0-26 | | | | | SAMPLE SOURCE Transmission | -# | | -11 | 1 1 1 | 1 | | | | | ш ' | 17.0 | 6001.0 | 12010.3 | 17156.7 | 21058 | | | | | ENGINE HOURS | | | | | | | | | | 51 | | | | | | | | | | GRADE | | | | | | | | | | SPECIFICATION MIL- | | | | | | | | | | TESTS | | | | | | | | | | API GRAVITY | 27.1 | 28.1 | 24.6 | | 22,3 | | | | | CORROSION (ASTM No.) | | | | | 1B+ | | | | | FLASH POINT ("F) | | 380 | 390 | | 375 | | | | | SEDIMENT (%) | | | | | | | | J | | | | | | 27.2 | Trace | | | CF | | ESIDUE | | 1.13 | 97. | | 47.0 | | | '-l. | | о Asн (% | | | | | | | | DF | | | | | | | | | | 2G | | | | | | | | | | | | AT 0°F | | | | | | | | | | AT 100°F | 86*65 | †8 • 11. | 119.8 | | 244.4 | | | | | AT 210°F | 8.19 | 9.22 | 12,27 | | 17.33 | | | | | Viscosity Index | | 111 | 101 | | 81 | | | | | PENTANE INSOLUBLES (%) | | 0.10 | 94.0 | | 1.28 | | | | | BLES | | 0.07 | 0.37 | | 0.22 | | | | | SPECTROGRAPHIC ANALYSIS (PPM) | | | | | | | | | | ALUMINUM | 7 | 11 | 13 | 2 | 3 | | | | | Ron | 32 | 151 | 585 | 235 | 290 | | | | | SILICON | 0 | 14 | 13 | 0 | & | | | | | Copper | 19 | 135 | 310 | 38 | 32 | | | | | Снвомгим | | 7 | 12 | ~ | 2 | | | | | XXXXX Magnesıum | - (| 7 | 7 | _ | - | | | | | LEAD | 12 | 35 | 33 | 21 | 61 | | | | | Tıx | | | | | | | | | | ZINC | | | | | | | | | | SILVER | 0 | U | n | 0 | D. | | | | | FOAM TEST | | | | | | | | | | SEG. I (ML.) | | | | | | | | | | Seg. II (ML.) | | | | | | | | | | III (ML.) | | | | | | | | | | CLOUD POUR POINT (PF) | | | | | | | | | | REMARKS | | | | | | | | | | Sirir-iis form 38, 18 Aug of | | | | | | | | | | () 曹二年皇帝帝,李 曹 皇帝,一年,一年,一年,七年,明,一年,一年,一年,一年,一年,一年,一年,一年,一年,一年,一年,一年,一年, | 1 | | | | | | And the Control of th | | | | | OIL AN | IL ANALYSIS SU | SUMMARY | | | | | |--|----------|-----------|----------------|-------------|-------------------|---------------|------|----------| | PROJECT ENGINEER Shoemaker | VEHICLE | 7 | - 1 | -USA REG. | No. 02DU8170 WORK | ORK ORDER NO. | 0850 | | | DATE | 4 Apr 70 | 24 Apr 70 | 14 May 70 | 1 Jul 70 | | | | Γ | | No. | _ | 70-2267 | 70-2369 | 70-2673 | | | | Γ | | | 1 | | | 1 1 1 1 1 1 | | | | | | Орометея | 17.0 | 6001 0 | 12010.3 | 21058 | | | | | | ENGINE HOURS | | | | | | | | | | Product | | | | | | | | <u> </u> | | GRADE | | | | | | | | Γ | | | | | | | | | | Γ | | TESTS | | | | , | | | | Γ | | | 25.0 | 25.9 | 23.2 | 22.6 | | | | ر
 | | CORROSION (ASTM No.) | | | | 18+ | | | | CF
 | | l | | 325 | 385 | 380 | | | | P-1, | | | | | | | | | | D | | | | | | | | | | PG
 | | CARBON RESIDUE | | 2.17 | 1.86 | 2,11 | | | | <u></u> | | SULFATED / | | | | | | | | | | X. | | | | | | | | | | ı. I | | | | | | | | | | AT OF | | | | | | | - | | | AT 100ºF | 181.5 | 209.0 | 229.4 | 243.0 | | | | Τ | | AT 210°F | 16,15 | 19.93 | 17,66 | 18,12 | | | | | | Viscosity Index | | 113 | 06 | 68 | | | | | | INSOLUBLES | | 0.57 | 0.59 | 2.14 | | | | | | BENZENE | | 0.52 | 57.0 | 1.64 | | | | | | S | | | | • | | | | | | ALUMINUM | 30 | 33 | 77 | 26 | | | | Γ | | Iron | 154 | 121 | 086 | 1750 | | | | Γ | | | 39 | 79 | 33 | 67 | | | | | | | 50 | 137 | 83 | 107 | | | | | | CHROMIUM | 2 | 17 | 39 | 69 | | | | | | ************************************** | | 7 | 3 | 5 | | | | Γ | | · northead | 2 | 12 | 1.7 | 28 | | | | Γ | | | | | | | | | | | | ZING | | | | | | | | Τ | | | o | ο | 0 | 0 | | | | T | | ഥ | | | | | | | | T | | SEG, I (ML.) | | | | | | | | Γ | | - 1 | | | | | | | | | | III (ML.) | | | | | | | | | | CLOUD POUR POINT ("F) | | | | | | | | | | KEMARKS. | | | | | | | | | | SIEIF-IIS FORM SA. 18 AUE 64 | | | | | | | | | | η
Β
Project Engineer Shoemaker | VEHICLE | OIL
11-11 | LYSIS | SUMMARY
USA REG. | Nofizhii8170 Work O | Order No. | 0850 | |--------------------------------------|----------|--------------|---------|---------------------|---------------------|-----------|------| | | 4 Apr 70 | 24 Ap | 15 | 1 70 | | | | | LE No. | 70-2201 | 70-2268 | 70-2370 | 70-2674 | | | | | SAMPLE SOURCE! Rear Different: | [a] | | I | | | | | | | 17.0 | 0.1000 | 12010.3 | 21058 | | | | | ┵. | | | } | | | | | | Ркорист | | | | | | | | | GRADE | | | | | | | | | SPECIFICATION MIL- | | | | | | | | | TESTS | | - { | | | | | | | - 1 | 25.0 | 24.9 | 22.0 | 22.7 | | | | | ION (AS | | | | 3B | | | | | = 1 | | 415 | 380 | 380 | | | | | S EDIME | | | | | | | | | WATER (%) | | | | | | | | | œ | | 2,76 | 2,66 | 2.14 | | | -1, | | SULFATED ASH (%) | | | | | | | | | KINEMATIC VISCOSITY (CS) | | | | | | | | | AT 40°F | | | | | | | | | AT 0°F | | | | i I | | | | | 1 | 180.4 | • | 268.4 | 243.3 | | | | | AT 210°F | 16,10 | 23.35 | 24.48 | 18,63 | | | | | Viscosity Index | | 119 | 7 | 93 | | | | | PENTANE INSOLUBLES (%) | | 2.94 | 3.14 | 2.20 | | | | | INSOLUBLES | | 2.70 | 2.98 | 2.38 | | | | | SPECTROG | | | | | | | - | | Агоміном | 4.1 | 61 | 45 | 17 | | | | | Iron | 275 | 3840 | 0009 | 1899 | | | | | | 59 | 112 | 150 | 26 | | | | | Соррея | 95 | 462 | 354 | 92 | | | | | CHROMIUM | 2 | 15 | 26 | 10 | | | | | | 2 | 17 | 11 | ~ | | | | | LEAD | 5 | 18 | 17 | 11 | | | | | | | | | | | | | | ZINC | | | | | | | | | | 0 | 0 | 0 | 0 | | | | | FOAM TEST | | | | | | | | | | | | | | | | | | = | | | | | | | | | Seg. III (ML.) | | | | | | | | | CLOUD POUR POINT (PF) | | | | | | | | | REMARKS | | | | | | | | | , | | | | | | | | | | | OIL AN | | SUMMARY | | | | | |-------------------------------|----------|------------|-----------|----------|----------|---|--|----------| | PROJECT ENGINEER SHOEMAKET | VEHICLE | LE M-15142 | | USA REG. | · Ž | CZDU8370 WORK | ORDER No. | 0851 | | DATE | 4 Apr 70 | 25 Apr 70 | 15 May 70 | 3 Jun 70 | 5 Jun 70 | 0 Im 70 | 22 1 20 | 1 11 70 | | SAMPLE No. | \sim | 226 | 70-237 | 250 | 0.10 | 2/0 | 27.7 | 70-2670 | | SAMPLE SOURCE | Fron | Enor no | Francino | Frairo | Frairo | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1. 2. 0. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | Engine | | Орометея | 23.2 | 6005.2 | | 16,7.7 | 300 | 7007L | 27081.6 | 21198.7 | | ENGINE HOURS | | | | | | 7 | | X7 : : ~ | | Product | | | | | | | | | | GRADE | | | | | | | | | | SPECIFICATION MIL- | | | | | | | | | | TESTS | | | | | | | | | | | 25.7 | 23.3 | 18.7 | 21.5 | 22.3 | 21.3 | 25.3 | 2 | | ໄດ່ | | | | | | | | | | FLASH POINT (F) | | 365 | 395 | 385 | 410 | 370 | 330 | | | | | | | | | | | DF | | ŀ | | | • | | • | | | | | ШΙ | | 2,48 | 5,35 | 4.15 | 4.36 | 4.23 | 3.58 | 2,86 | | | | 2,12 | 3.47 | 3,33 | 2.68 | 3.07 | 2.73 | 2.48 | | KINEMATIC VISCOSITY (CS) | | | | | | | | | | 1. I | | | | | | | | | | AT 00F | | | | , | | | | | | AT 100°F | 85:50 | 126.4 | 1 | 92:56 | 98.95 | 101.7 | 97.30 | 95.20 | | | 9.63 | 11.65 | 1 | 10.19 | 10.15 | 10.47 | 10.77 | 10.57 | | Y INDEX | | 85 | | 76 | 68 | 26 | -103 | 102 | | INSOLUBLES | | 2.98 | | 5:96 | 4.40 | 5.72 | 4.91 | 1.80 | | BENZENE INSOLUBLES (%) | | 1.76 | 5.58 | 08*7 | 3.53 | 14.6 | 3.85 | 1.64 | | SPECTROGRAPHIC ANALYSIS (PPM) | · | | | | | | | | | ALUMINUM | 5 | 15 | 18 | 4 | 7 | ∞ | 2 | 917 | | RON | 14 | 57 | 132 | 16 | 65 | 26 | 55 | 1025 | | SILICON | 22 | 12 | 37 | 9 | 5 | ο | 5 | 9 | | Соррея | 24 | 717 | 14 | & | 7 | 8 | 5 | 9 | | Снвоміим | - | 7 | 10 | 25 | 9 | 6 | 33 | 11 | | NcXXX Magnesium | 4 | 5 | 3 | 2 | 2 | _ | 2 | 17 | | LEAD | 143 | 3000 | 2700 | 1648 | 2500 | 3000 | 3000 | 1950 | | z. | | | | | | | | | | ZING | | | | | | | | | | SILVER | 0 | 0 | 0 | o | P. | O | 0 | 0 | | FOAM TEST | | | | | | | | | | SEG, I (ML,) | | | | | | | | | | - 1 | | | | | | | | | | SEG. III (ML.) | | | | | | | | | | DUR POINT (PF) | - | | | | | | | | | REMARKS, FI | | 1.0 | 1.2 | 2•0 | 1.6 | 2.0 | Q* | 4.5 | | | | | | | | | | | | :
:- | - | OIL ANA | L ANALYSIS SUMMARY | MMARY. | | | | |------------------------------|----------|---------|--------------------|---------------------------------------|-------------------------------|---------------------------------------|-----| | G PROJECT ENGINEER_Shoemaker | VEHICLE | T | A2 . | USA REG. | No.02DU8370 | ZO WORK ONDER No. 0851 | | | DATE | 4 Apr 70 | 1 13 | 5 May 70 | 07 mil 6 | 22 Tun 70 | | | | | 70-2203 | 70-2270 | 70-2376 | 70-2482 | 70-2512 | | T | | SAMPLE | Trans. | J.S. | Trans. | Trans. | Trans | | | | Орометея | 23.2 | 6005.2 | Γ | 17836 | 21084.6 | T | | GRADE | | | | | | | | | SPECIFICATION MIL- | | | | | | | T | | TESTS | | | | | · | | | | API GRAVITY | 27.3 | 28.0 | 22.7 | 22.6 | 22.5 | | | | ION (AS | | | | | | | | | | | 007 | 280 | 370 | 275 | | T | | SEDIME | | | | | | | | | $\overline{}$ | | | | | | | JCI | | | | 1 22 | 2 06 | 1 %0 | -
- | | P-I | | SULFATE | | 479 | ۹ . | 4 | 4 | | , D | | | | | | | | | PG | | iı, I | | | | | | | | | AT 0°F | | | | • | | | | | ΤΑ | 63.40 | 81.86 | 211.9 | 248.1 | | | | | AT 210°F | 8,35 | 9.79 | 16.26 | 19.18 | | | | | VISCOSITY INDEX | • | 106 | .85 | 1 | | | | | PENTANE INSOLUBLES (%) | | 0.10 | 0.92 | 06-0 | 1.28 | | | | INSOLUBLES | | 0.07 | 0.54 | 69.0 | 0.23 | | | | SPECTROG | | | | | | | T | | | 2 | 7 | 5 | 8 | 10 | | | | | 20 | 168 | 1460 | 260 | 279 | | | | SILICON | | 10 | 10 | 23 | 37 | | T | | _ | 14 | 122 | 260 | 31 | 31 | | | | CHROMIL | 1 | 3 | 34 | ~ | 77 | | | | News Magnesium | 1 | 1 | 7 | - | - | | | | LEAD | 6 | 25 | 25 | 51 | 39 | | | | z-L | | | | | | | | | ZINC | | | | | | | T | | | 0 | 0 | 0 | 0 | 0. | | | | FOAM TEST | | | | | | | | | Sec. I (ML.) | | | | | | | | | | | | | | | | | | ∑ I | | | | | | | | | _ | | | | | | | | | KEMARKS. | | | | | | | | | Sieir-iis form 3a, 18 Aug of | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | And the first and the same of | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | [|
--|-------------------------------|----------|-----------|-----------------|----------|------------------------------|--------------|----------| | | | | Ō. > | IL ANALYSIS SUI | | | | | | | CI LNGINEER | | | | Š | No. UKILLESTO WORK ORDER No. | DER No. 1021 | T | | | - 1 | 4 Apr 70 | 25 Apr 70 | 15 May 70 | 9 Jun 70 | 22 Jun 70 | | | | | - 1 | 70-2204 | 70-2271 | 70-2377 | 70-2483 | 70-2513 | | | | | SAMPLE SOURCEDIFFerential | Front. | Front | | Front. | Front | | Γ | | | Орометек | 23.2 | 6005.2 | | 17836 | 210kl. K | | Γ | | | ENGINE HOURS | | | | 7777 | ٩ . | | Τ | | | Ркорист | | | | | | | Τ | | i i | GRADE | | | | | | | Τ | | | SPECIFICATION MIL- | | | | | | | Τ | | | | | | | | | | Τ | | | API GRAVITY | 25.0 | 24.7 | 22.7 | 22.0 | 22.2 | | J
I | | | S | | | | N . | | | CF | | /\s. | FLASH POINT (PF) | | 410 | 390 | | 370 | | }-I,
 | | | SEDIMENT (%) | | | | | | | DI
 | | | WATER (%) | | | | 3.2 | 0.8 | | PG
 | | | CARBON RESIDUE (%) | | 2.44 | 2.03 | 2.06 | 2,20 | | 1 | | negar. | SULFATED ASH (%) | | | | | | | | | | KINEMATIC VISCOSITY (CS) | | | | | | | Γ | | | ı. | | | | | | | Τ | | | | | | | | | | T | | | AT 1000F | | 220.3 | 234.1 | 271.1 | 257.2 | | Τ | | | AT 210°F | 16,18 | 20.70 | 17.72 | 23.51 | 19.79 | | Τ | | | Viscosity INDEX | | 113 | 89 | | 96 | | Τ | | ** | PENTANE INSOLUBLES (%) | | 0.82 | 2.32 | 3.42 | 76*4 | | | | | | | 0.70 | 1.34 | 1.7/4 | 2.07 | | Γ | | | SPECTROGRAPHIC ANALYSIS (PPM) | | • | | | | | Γ | | | ı | 21 | 36 | 50 | 12 | 24 | | Γ | | | Ron | 108 | 2500 | 1650 | 1673 | 21 | | | | | SILICON | 22 | 89 | 31 | 33 | 67 | | Τ | | | Соррея | 51 | 140 | 140 | 56 | | | | | | ~ | | 10 | 73 | 16 | 20 | | | | | NEXTEX Magnesium | | 4 | 4 | 3 | 2 | | | | | LEAD | 2 | 20 | 22 | 84 | 07 | | | | | Z-H | | | | | | | Γ | | | Z INC | | | | | | | T | | | Silver | 0 | 0 | 0 | 0 | 0 | | Γ | | e de la companya l | FOAM TEST | | | | | | | | | | SEG, I (ML.) | | | | | | | Γ | | | - 1 | | | | | | | Γ | | | III (ML.) | | | | | | | | | I- | CLOUD POUR POINT (F) | | | | | | | | | 11 | REMARKS | | | | | | | | | *** | SIETP-IIS Form 3a. 18 Aug 64 | | | | | | | 1 | STEYP-IIS Form 3a, 18 Aug 64 | | | | | | | | | | | | | | J | JCF | JCP-I, | JCP-I, DI | JCP-I, DPG |--------------|------------|---------------------|---------|----------|--------------------------|-------------------------------|-------------------------------------|--|----------|---|---|---------------------------------------|--|---|---|--|--------------------------------------|--|--|--
---|--|---|--
--	--	---	---	--	---
--	---	---	--	---	
22.4 375 375 2.24 2.24 2.52 2.52 2.52 2.10	22.4 375 375 2.24 2.46.8 19.80 100 2.52 2.10				
22.22 22.22 22.22 25.02 25.03		25.	70-02	+-	
HOUF HOUSE HOUS HOUSE HOUSE HOUSE HOUSE HOUSE HOUSE HOUSE HOUSE HOUSE HOUSE HO	HOUF HOUSENT GRAVIICATIO OSION H POII MATICATICATION MATICATICATICATICATICATICATICATICATICATIC	HOUF HOUS GRAVIT GRAVIT GRAVIT MENT ANTIC	HOUF HOUF	HOURS TEATION M CT GRAVITY GRAVITY OSION (AST H POINT (L) NENT (L) ON RESIDUE ON RESIDUE ATEO ASH WATIC VISC AOF 100°F 11TY INDEX ME INSOLUB IN	TER HOURS ST GRAVITY GRAVITY OSION (AST MENT (7) RENT (7) RENT (1) ON RESIDUR ATTE AST ON RESIDUR ON RESIDUR ON RESIDUR ON RESIDUR ON RESIDUR ATTE NOF TOPE ITY INDEX ME INSOLUB M
A0°F 100°F 100°F 110°F 11	HOURS ST CT CT CT CAVITY SSION (AST WENT (2) NENT (2) NENT (2) NATIC VISC ANDEX ANDEX ANDEX ITY INDEX INUM CON CON CON CON CON CON CON CO	HOURS ST CT CT CT CT CAVITY GRAVITY OSION (AST WENT (1) NENT (1) ON NATIC VISC AOF ITY INDEX LITY I	HOURS TER HOURS ST GRAVITY GRAVITY GRAVITY OSION (AST NENT (1) NENT (1) NATIC VISC AOF OOF ITY INDEX ME INSOLUB RE	HOURS TER HOURS ST GRAVITY GRAVITY OSION (AST WENT (1) R (1) NATIC VISC AOF OOF ITY INDEX INUM ON ON ON ON ON ON ON ON ON O	TER HOURS ST GRAVITY GRAVITY OSION (AST MENT (1) NENT (1) NATIC VISC AOF 100°F 100°F 110°F 110
) 1 () 1 (TESTS				
------------------	-------------	-------	--------------	--------	--------
Left Right		Specification is 0 inch left and 3 inches down.	4 L 2 L 10 D 10 D	2 R 0 L 10 D 10 D	1 R 1-1/2 R 9 D 9 D
Engine. The engine shall conform to MIL-E-45332, except that the section covering preparation for delivery shall not apply. The vehicle shall meet all performance requirements specified herein with engine installed.		х	2.3.4.6	Failed radio interference suppression tests.	
air cleaner shall not leak air when properly assembled and tested to a vacuum of 50 inches of water.	х		2.5.4.2		
be improved.		22. The bushings in the front upper and lower A-frame control arms were observed to be badly worn on all vehicles.	Improve bushing design or quality.	The problem was first noticed on U81 at 17,836 test miles. A check of the other vehicles at the time revealed the similar wear. New sets of arms were installed on U81 and U83, but the set on U83 had a repeated failure after only 200 miles, and were replaced. The arms on U86 were never replaced, but were shimmed instead to try to reach the camber specification. At the end of test each vehicle had 5/8 inch to 3/4 inch of shim for the front control arms. The reason for bushing failure has not been resolved.	
Allocation Chart of the assembly or subassembly.		3	Component and related operation as indicated in the Maintenance Allocation Chart. Operation assigned to depot level maintenance are not normally shown.		4
CLOCK	6	0.3		0.3	
0.9 0.9 1.5 1.2949 X Replaced, EPR L5-41 and condenser 0 0 X 0.2 0.2 1.5 1.949 X Replaced, EPR L5-41 ask divered 0 0 X 0.1 0.1 1.2949 X Adjusted ear tire, worn 0 0 X 0.6 0.1 0.1 0.2	+		- 1	ar	0
C X 0.8 0.8 16942 X X Replaced cation C X 0.2 0.2 17025 X Replaced ed A-frame bolts 0 0 X 0.4 17150 X Bolts loose 1 U-joint on 0 0 X 1.5 0.7 17156.7 X 15-53 - Failure	d fuel leak 0 0 X 1.9 0.9 16694 X	-	1	lubrication	1
--	-------------	------------	--	---------	--------------------------
2610-269-753-4258 4 Spark plug 0 0 12949 X Replaced indicato 13 2610-269-733-1 1 Inner tube 0 0 <	7		6240-044-6914	-	Lamp, incandescent
Flance transmission	c	c	17156.7		×
--	--	--	------	---	------
4		3		,	6
lite C C X 1.0 1.0 16075 X lite C C X 1.0 1.0 16075 X lited tube O O X 0.6 0.6 16279 ont O O X 8.0 4.2 16447	I			5	×
2.5 2.5			Flat tire, repaired	0	0
2B (Con	NON	M			TECH MANUAL
68		Jan 70		Apr 68	
CLOCK		SCD	UNSCD	EPR No REMARKS	
 13 Performed 6000-mile 0 0 X 10.7 5.4 5997.7 maintenance 2 men |] | | - | 1 | | 1 | | | 1 man | - 1 | | | | | | STEYP-IE Form 120, 11 Dec 69 (Rev). Previous edition is obs | 13 | - | | | 0 | 0 | × | | 10.7 | | 5997.7 | × | | | | STEYP-TE Form 120, 11 Dec 69 (Rev). Previous edition is | _ | | maintenance | | | | | | 2 men | | | | | | | | | YP-TE 1 | 69 | (Rev). | Prev | gno | ittion | 18 | solete, | | | | | | ×4... | | | | | | Chart | 3B
(Cc | (Continued) | ig) | | | | | | _ | |----------------|----------|------------------------|--------------------|------------------|-----------|-----------------|--------------|-------------|--------|-----------|----------|---------------------|------------------------|-------------| | \$ | NATION | PA SISY INVESTIGATION | PROJECT | ° O | | Σ
Ο Z | NOMENCLATURE | UR
타 | | | | | 02018670 | | | Σ | | | 1-VG-120-151-034 | 0-151 | -034 | M | M151A2 | | | | | | 0200000 | _ | | | | | Ž | MAINTENANCE | ANCE | | | | | SYSTEM | | | NOTE: | | | | | | 1
0 | LEVEL
OP CREW |

 | | | ACTIVE | VE | W
L | | | MCF - MISSION CRITICAL | | | | | | -
 O <u> -</u> | ORG | | TECH MANUAL | | MAINTENANCE | | M - MILES | 8 8 EA | REASON
PFREORMED | FAILURE | | | S
G
A | GROUP | Ž | <u> </u> | - 7 - | | NS I KU | | MAN- | CLOCK | | SCD | UNSCD | EPR No REMARKS | | | NO. | °° | RELATED OPERATIONS | | PRESB | R C M | | 1 | | HOURST | 10 | - | 12 | 13 | Ţ | | - | 2 | 3 | | 4 | 2 | ٩ | 1 | ρ | 2 | li . | - | <u>.</u> | | 1 | | 14 | 12 | Cleaned front brake s | shoes | 0 | 0 | × | | 2.0 | 2.0 | 5997.7 | | × | | η- | | | | | | | | | | 1 man | c | 7 2003 | | Δ | 15-74 renlaced | T | | 15 | 90 | Spark plugs leads | + | | 0 | × | | 1 22 | 7.0 | 1.1660 | | 4 | 4 | 1 | | ; | 5 | 0114 | l a a a |
 c | 0 | × | | 1.1 | 9.0 | 6518.0 | | X | Replaced, L5-26 | | | 9 | 3 | | | | | | | 1 man | | | | | | -T | | 17 | i | 1 0 | | ပ | ၁ | × | | 1.0 | 1.0 | 7000.0 | × | | | 1 | | 1 | | lubrication | | | | | | 1 man | - 1 | | | ; | | T | | 18 | 12 | Adjusted hand parking | | 0 | 0 | × | | 0.2 | 0.2 | 7382.7 | | × | | Т | | 2 | | | | | | | | 1 man | 1 | 1 0001 | | Þ | Tananatad | Т | | 10 | 16 | Front springs and | | 0 | 0 | × | | 0.3 | 0.3 | 1387.1 | | 4 | Tushecrea | Τ | | | | 1 | | | , | | | 1 man | 9 | 7 2907 7 | | × | Inspected | T | | 20 | 16 | Rear springs and | | 0 | 0 | × | | | 7.0 | • | | | | Τ | | | | | | | | > | | 1 man | 0.0 | 7382.7 | | × | Inspected | | | 27 | 10 | differential | onc- |) | | 4 | | 1 man | | | _ | | | 7 | | | | put shaft seal | | c | c | × | | | 0.8 | 7806.4 | | × | Replaced | 7 | | 22 | 13 | Inner tube, tire | - | | | 4 | | 1 man | | | | | | | | 3 | | n | _ | C | U | × | | 1.0 | 1.0 | 8001.6 | X | | | 7 | | 73 | | 1t.inction | + | , | , | | | 1 man | | | | | | T | | 6 | 5 | Deslace tube | | 0 | 0 | × | | 1.0 | 1.0 | 8074 | | × | L5-2/ | Т | | 25 | 15 | Replace tube | - | 0 | 0 | X | | 1.0 | 1.0 | 8163 | | × | L5-2/ | Т | | 26 | 13 | Replace flat tire with | th | 0 | 0 | × | | 0.5 | 0.5 | 8298.9 | | 4 | | Т | | | | spare | 1 | | , | ļ | | - | 1 | 8896 | 1 | × | L5-27 | Γ | | 27 | 13 | Repair left rear tire, | e, | 0 | 0 | × | | 7:1 | 2 | 2520 | | | | | | | | be instal | | 0 | c | × | | 0.3 | 0.3 | 8975 | <u> </u> | × | L5-29 | | | 28 | 3 | Replace fuel cap gas | gasket | 2 | ٥ | 4 > | | . 1 | | 0.0006 | × | _ | | | | 52 | - | Perform 1000-mile | - | اد | اد | 4 | | | | | | _ | | 7 | | | | ion | 1 | | C | × | | 0.8 | 0.8 | 9212 | _ | × | | | | <u>ස</u> | 13 | انه | rupe | ٥ | تاد | × | | | 1.0 | | × | | | T | | $\overline{1}$ | | Perrorm 1000-mile | | , | , | | | | _ | | | | | ٦ | | | | lubrication | + | | | | | | | | | | | ٦ | | | • | 11 22 60 | | | ١, | 20 74 7 60 | ٤ | phanlete | | | | | | | | SIE | STEYP-TE | Form 120, 11 Dec 69 (| (Kev). | Freviou | 20 | 10111D | 4 | 797767 | • | | | | | | | 32 33 33 34 40 40 40 40 40 40 40 40 40 40 40 40 40 | AINTEL | MAINTENANCE ANALYSIS CHART CHART CHART CHART 1-VG-1 COMPONENT AND RELATED OPERATIONS 1 2 3 1 2 3 1 2 3 1 2 3 1 3 1 1 2 3 1 3 1 2 1 1 1 2 1 1 2 1 1 2 1 1 3 1 2 1 1 2 1 1 2 1 1 2 1 1 3 1 2 1 1 2 1 1 3 1 2 1 1 2 1 1 3 1 2 1 1 2 1 1 2 1 1 3 1 2 1 1 2 1 1 2 1 1 2 1 1 3 1 2 1 1 2 1 1 3 1 2 1 1 2 1 1 3 1 2 1 1 3 1 2 1 1 4 06 Directional control 2 2 2 3 3 16 2 2 3 3 16 1 3 10 Rear shocks, lower mount 2 2 3 3 3 16 2 2 3 3 3 3 16 2 3 10 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 | [5 7] OOKT [] | C C C C C C C C C C C C C C C C C C C | Chart Nomen Nom | CLAT 182 CLAT 182 CLAT 183 CLAT 184 CLA | 11 NA TIN | | 11505
12276
12276
12276
12276
12431
13059
13059
13950
13950
13950 | REASON PERFORMED SCD UNSCE 11 | | NOTE:: MCF - MISSION CRITICAL FAILURE 13 15-36, L5-37 L5-36, L5-37 L5-38, during 12,000- mile lubrication Tightened Replaced valve core Replaced valve core Replaced tube Replaced tube L5-33, replaced L5-47 L5-49 | |--|--|--|---------------|---------------------------------------|--
--|--|-------|---|-------------------------------------|-------|--| | 43 | - - | leaks, repaired Perform 1000-mile | U | U | × | | 0.5 | 0.5 | 14029 | × | | | | 7 | _ | Tooks ronsired | | | | | | ł | | | | | | 420 | | Windshield washer pump | 0 | 0 | Х | | 1.5 | • | 13950 | | × | | | | | seals leak, repaired | | | | | | | | | | | | 42B | | | 0 | 0 | × | | 4.5 | 2.3 | 13950 | | × | | | | | aired | | | | | | | | | | | | 42A | | front brake | 0 | 0 | × | | • 1 | • | 13950 | | × | , | | | | | | | | | | | | | | | | 42 | 16 | | | 0 | X | | • [| 1.0 | 13950 | | × | L5-49 | | 41 | 90 | | | 0 | × | | • [| 2.1 | 13452 | | × | L5-47 | | | | | | | | | | | | | | | | 40A | | out, | 0 | 0 | × | | 0.8 | 0.8 | 13059 | × | , | 33, | | | | | | | | | | | | | | ĺ | | 07 | | bolt | | 0 | X | | 0.2 | 0.2 | 13059 | | × | Retightened | | | | lubrication | | | | | | | | | | | | 99 | ! | 1000-mi | ပ | ວ | X | | • | 0.7 | 13000 | × | | | | 38 | 13 | left | 0 | 0 | × | | • | 0.8 | 12708 | | × | - 1 | | 37 | 13 | | | 0 | X | | 0.5 | • | 12431 | | X | valve | | 36 | 13 | | | 0 | X | | 1.3 | 1.3 | 12276 | | × | 4 | | 35 | 01 | ı. | 0 | 0 | × | | 0.3 | 0.3 | 12250 | | X | - | | | _ | | | | | | | | | | | mile lubrication | | 34A | \vdash | Į. | 0 | 0 | × | | 0.4 | 0.2 | 12084 | | × | during | | _ | | lubrication | | | | | | | | | | | | 34 | ! | Performed 12,000-mile | 0 | 0 | × | | 14.4 | 7.2 | 12084 | × | | - 1 | | | | | | | | | | | | | | - 1 | | 33 | 16 | lower | | 0 | × | | 0.1 | 0.1 | 11505 | | × | - 1 | | | _ | | | | | | | | | | | - 1 | | 32 | | | О | ပ | × | | 1.0 | 1.0 | 11000 | × | | | | - | 2 | 3 | 4 | 5 | 9 | | 8 | 6 | 10 | 11 | 12 | 13 | | o
Z | | | PRESB | | ADGT | | | CLOCK | R-ROUNDS | | INSCD | No. | | ς
Ο Ε | | | 1 1 0 1 8 | • | TECH NINSTRU | CTIONS | ¥ ; | Ш | H-HOURS | PERFO | RMED | | | | | | 1 | : | | | MAINTE | | ı | REA | NOS | FAILURE | | | | | 1 | /EL | | | ACT | 175 | LIFE | | | 1 | | | | 1 | MAINT | ENANCE | | | | | SYSTEM | | | NOT C | | Σ | AINIE | ANALISIS | 3-120-15 | 11-034 | Σ. | 151A2 | | | | | | 02DU8670 | | Ŀ | | ANIAI VOIC | ı | | NON | ENCLAT | URE | | | | _ | | | | | | | | Cha | 3B | (Conti | (pant | | | | | | | | | | | | | | | | | | | STEYP-TE Form 120, 11 Dec 69 (Rev). × 14840 1.0 1.0 × 0 0 Replaced turn signal 9 45 Previous edition is obsolete. 14089 0.3 0.3 × ပ ပ Flat tire, replaced | | | | ON 1000 | Chart | 35 | (Concluded) | (pa | | | | | | |----------|---------|----------------------------|----------------|--------------------|--------------|---------------------------------------|-----------------------|----------------|-----------|-----------|-------|-----------------------------------| | ¥Ψ | INTER | | | | 2 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | d
C | | | | 2 | ON NOT WELL THE WAY | | | | кт | 1-VG-120-151-0 | 51-034 | | M151A2 | | | | | | 02DU8670 | | | | | MAINTENA | INTENANCE
LEVEL | | | | | SYSTEM | | | NOTE:. | | | | | 0 0 1 0 | OP CREW |)
(| 2 | ACTIVE
MAINTENANCE | | M - MILES | REASON | NOS | MCF - MISSION CRITICAL
FAILURE | | SEG | GROUP | COMPONENT AND | 1 1 | DIRECT | INSTRUCTIONS | CTIONS | 2 | E | H-HOURS- | PERFORMED | RMED | | | °o z | o
v | RELATED OPERATIONS | 2 | RECM | ADQT | NADQT | MAN-
HOURS | CLOCK
HOURS | R ROUNDS | Scb | UNSCD | EPR No REMARKS | | - | 2 | 3 | 4 | 5 | 9 | 7 | | 6 | 10 | 11 | 12 | 13 | | 45A | 15 | Checked front end | Ŧ | F | × | | 3.0 | 3.0 | 14840 | | × | | | | | ment | | | | | | | | | | | | 95 | | Perform 1000-mile | ပ | U | × | | 0.5 | 0.5 | 14994 | × | | | | | | lubrication | | | | | | | | | | | | 47 | 16 | Left front shock, | 0 | 0 | × | | 2.4 | 2.4 | 14999 | | × | L5-50 | | | | replaced | | | | | | | | | | | | 85 | 13 | Flat tire, install spare | C
e | ပ | × | | 0.3 | 0.3 | 15060 | | × | | | 49 | 13 | Left rear tube, replace | | 0 | × | | 1.0 | 1.0 | 15240 | | × | | | 20 | 12 | Replace brake linings | 0 | 0 | × | | 2.5 | 1.5 | 15263 | | × | | | 13 | 1 | Perform 1000-mile | ပ | ပ | × | | 1.2 | 9.0 | 16008 | × | | | | | | lubrication | | | | | | - 1 | | | | | | 52 | i | Perform 1000-mile | O | ပ | × | | 0.8 | 0.8 | 17047 | × | | | | | | Iubrication | | | | | | | | | | | | 53 | 1 | Perform 1000-mile | ပ | ၁ | × | | 0.8 | 0.8 | 18020 | × | | | | | | Iubrication | | | | | | | | | | | | 54 | 1 | Perform 18,000-mile | 0 | 0 | × | | 27.8 | 11.2 | 18639 | × | | | | | | maintenance | | | | | | | | | • | | | 54A | 90 | Replace spark plug lead | 0 | 0 | × | | 9.0 | 9.0 | 18639 | | × | | | 54B | 12 | Replace parking brake | 0 | 0 | × | | 2.8 | 1.7 | 18639 | | × | | | | | band | | | | | | | | | | | | 55 | i | Perform 1000-mile | O | ပ | × | | 0.8 | 8.0 | 19022 | × | | | | | | lubrication | - | | | | | i | | | | | | -56 | ! | Perform 1000-mile | O | S | × | | 0.7 | 0.7 | 20097 | × | | | | 1 | , | | _1_ | C | Þ | | u c | 7 | 20002 | | λ | (15-51) nuive | | 76. | 9 % | | | | 4 > | | | | 20021 | | 4 > | 10 | | χ ς
γ | 13 | Replace panel bulb | 2 0 | ی د | < × | | 0.5 | 2.0 | 20573 | × | 4 | 1 | | 1 | <u></u> | with spare | - | | | | | | | | | | | 09 | 1 | Perform 1000-mile | ပ | ၁ | × | | 0.4 | 0.4 | 21002 | × | | | | | | lubrication | | | | | | | | | | 4 | | 19 | 01 | Performed A maintenance | 0 | 0 | × | | | | 21123 | × | | | | | | and final in part | | | | | | | | | | | | | | TOTALS | | | | | 116.4 | 78.0 | | | | | | STEYP-TE | | Form 120, 11 Dec 69 (Rev). | | Previous ed | edition | 18 | obsolete. | _ | | | | | IV-32 | | | | PROJECT | °O _N | NOMENCLATURE | RE | | | | IDENTIFICATION | |----------|--------|-------------------|---------|--------------------------|--------------|---------------
--------------|--------------|--------------|-------------------------| | 2 | DADTCA | ANAI VSIS CHART | , | . (| | | | | | of your oo | | \ | | | 1-VC | 1-VG-120-151-034 Truck, | | Utility, 1 | 1/4-Ton, 4x4 | , MI51A2 | 1A2 | 02DU8 67 0 | | | | | | | MAINTENA | MAINTENANCE | PART LIFE | | | | | | | | | | 1 | OP CREW | | | | | | | | | | ٠., | F - DIRE | ORG
DIRECT | M - MILES | | | | | i
i | (| | | | 1 | GENERAL | H HOURS | REASC | REASON USED | | | SEO. | NO. | PEDERAL STOCK NO. | ΩTY | NOMENCLATURE | PRESB | RECM | ROUNDS | scp. | UNSCD | EPR No REMARKS | | - | 2 | | 4 | S | 9 | 7 | 8 | 6 | 10 | - | | - | 90 | GE-1829 | | Lamp, incandescent | 0 | 0 | 13.6 | | X | 1.5-3 | | 1 | 0,0 | 6220-669-5623 | 1 | 1 2 | 0 | 0 | 91.8 | | X | L5-4 | | 10 | 13 | 2610-678-1363 | - | l a | 0 | 0 | 3840.0 | | × | LS-14 | | 12 | 13 | 2610-269-7332 | - | Inner tube, pneumatic | 0 | 0 | 3840.0 | | X | 15-14 | | | | | | tire | | | | | | | | 15 | 90 | 2920-843-1717 | 2 | Leads, spark plug | 0 | 0 | 5997.7 | | × | 15-24 | | 16 | 10 | 2520-887-1347 | 1 | rear o | 0 | 0 | 6518.0 | | × | L5-26 | | 22 | 13 | 2610-269-7332 | - | Inner tube, pneumatic | 0 | 0 | 7806.4 | | × | L5-27 | | | | | | tire | | | | | | | | 24 | 13 | 2610-269-7332 | 1 | Tube, pneumatic | 0 | 0 | 8074 | | × | L5-27 | | 25 | 13 | 2610-269-7332 | ٦ | Tube, pneumatic | 0 | 0 | 8163 | | × | L5-27 | | 27 | 13 | 2610-269-7332 | 1 | Tube, pneumatic | 0 | 0 | 9688 | | × | L5-27 | | 28 | 03 | 2910-930-2060 | 7 | | 0 | 0 | 8975 | _ | × | L5-29 | | 30 | 13 | 2610-269-7332 | - | Tube, pneumatic | 0 | 0 | 9212 | | × | | | 34 | 0.1 | 2940-832-6054 | П | Filter, oil | 0 | 0 | 12084 | × | | 15-36, 15-37 | | 34A | 90 ▶ | 2540-953-2180 | П | Control, directional | 0 | 0 | 12084 | | × | L5-38 | | 36 | 13 | 2610-678-1363 | 1 | Tire, pneumatic | 0 | 0 | 12276 | | × | L5-33 | | | 13 | 2610-269-7332 | н | Tube, pneumatic | 0 | 0 | 12276 | | × | L5-33 | | 37 | 13 | Unknown | 7 | Valve core | 0 | 0 | 12431 | | × | | | 38 | 13 | 2610-269-7332 | 1 | pneuma | 0 | 0 | 12708 | | × | | | 40A | 13 | 2610-678-1363 | 7 | Tire, pneumatic | 0 | 0 | 13059 | × | | L5-33 | | 41 | 01 | AR 75 | 4 | Spark plug | 0 | 0 | 13452 | | × | L5-47 | | 41 | 01 | P1-ZZ TGW3028DS | - | Contact, point set | 9 | 9 | 13452 | _ | × | L5-47 | | 42 | 16 | 2510-678-2963 | 7 | Spring | 0 | 0 | 13950 | | × | 1.5–49 | | 4.5 | 90 | 2540-953-2180 | П | Control, turn signal | 0 | 0 | 14840 | | × | L5-48 | | 47 | 16 | 2540-176-9466 | | Shock absorber | 0 | 0 | 14999 | | × | 15-50 | | | | 2530-700-1423 | 2 | Dust covers, brake | | | | | | | | 49 | 13 | 2610-269-7332 | 1 | Tube, pneumatic | 0 | 0 | 15240 | | × | | | 50 | 12 | 2530-678-3111 | 8 | Brake, lining shoe | 0 | 0 | 15263 | | × | | | 54 | 03 | 2940-678-4253 | -1 | ы | 0 | 0 | 18639 | × | | 18,000-mile maintenance | | | 5 | 11630417 | - | Filter oil | 9 | d | 18639 | × | | L3-3/ | | 544 | 90 | 2920-843-1718 | 4 | Lead spark plug | 0 | 0 | 18639 | \downarrow | × | | | | | | _ | | _ | | | | | | | | IDENTIFICATION OF THE OPENING THE OPENING TO THE OPENING OPENI | 0200010 | | | | | D EPR No REMARKS | | | \dashv | + | Worn out |---------------|--|--------------------|-----------|-----------|-----------|-------------|-------------------|------|--------------------|----------------|------------------------|---------------|--|--|---|---|---|---|--|---|---|--|--|--|---|--|--|---|--|---| | | | | | | | REASON USED | SCD UNSCD | 9 10 | X | X | × | × | - | | PART LIFE | | M - MILES | # -HOURD | - BOUNDE - B | 8 | 18639 | 20097 | 20173 | 20573 | RE | | | - OP CREW | DIRECT | - GENERAL | RECM | 7 | 0 | 0 | 0 | 0 | (Concluded) | NOMENCLATURE | N151A2 | MAINT | 11 | 1 | 1
I | PRESB | 9 | 0 | 0 | 0 | | | | - | | - | | | | | | | | | | | | | | | Chart 3C (Con | 0 Z | 1-VG-120-151-034 N | | | | | NOMENCLATURE | | Parking brake band | Shock absorber | Lamp, instrument panel | <u>a</u> | | | | | | αTΥ | 4 | 1 | 1 | 1 | 1 | | | - | - | | _ | | - | - | | | | _ | | | - | | - | | | ANAI VSIS CHART | - 1 | | | | | FEDERAL STOCK NO. | 3 | 2530-678-1284 | 2540-678-2978 | GE 1829 | 2610-678-1363 | PAKIS A | | | | | GROUP
No. | 2 | ∥⁻ | l_ | | 13 | PA | | | | | SEO. | - | 54B | 57 | 58 | 59 | ã | |----| | ., | | ï | | ha | | • | | | (| | | | | | | | |---------------------------|-----|---------------------------|-------------------|---------|-----------|-------------|-----------------|------------------| | MAINTENANCE
LITERATURE | TUR | FACRAGE
E CHART | 1-VG-120-151-034 | M151A2, | Truck, Ut | Utility, 1/ | 1/4-Ton, 4x4 | 02b U8670 | | | | MANUSCRIPT | | DATE RE | RECEIVED | EVALUATION | FORM 1598 | | | NUMBER | QTY | I | TITLE | LIT. | MATERIAL | ADOT NADOT | QT DATE FORWARD | REMARKS | | 1 | 2 | | 3 | 4 | 5 | 2 9 | 8 | 6 | | 1M-9-2320-
218-10 | - | Truck, Utility,
N151 | y, 1/4-Ton, 4x4, | Mar 68 | Apr 70 | X | None | Not evaluated | | TM-9-2320-
218-10 C/1 | П | Truck, Utility,
M151A2 | .y, 1/4-Ton, 4x4, | Dec 69 | Apr 70 | × | None | Not evaluated | | TM-9-2320-
218-20 | - | Truck, Utility,
M151 | y, 1/4-Ton, 4x4, | Aug 68 | Apr 70 | × | None | Not evaluated | | TM-9-2320-
218-20 C/1 | | Truck, Utility,
M151A2 | y, 1/4-Ton, 4x4, | Jan 70 | Apr 70 | × | None | Not evaluated | | TM-9-2320-
218-20P | 1 | Truck, Utility,
M151 | y, 1/4-Ton, 4x4, | Apr 68 | Apr 70 | × | None | Not evaluated | | TM-9-2320-
218-20P C/2 | 1 | Truck, Utility,
M151A2 | y, 1/4-Ton, 4x4, | Jan 70 | Apr 70 | × | None | Not evaluated | | TM-9-2320-
218-34 | 1 | Truck, Utility,
M151 | y, 1/4-Ton, 4x4, | Jul 68 | Apr 70 | × | None | Not evaluated | | TM-9-2320-
218-34 C/2 | 1 | Truck, Utility,
M151A2 | y, 1/4-Ton, 4x4, | Jan 70 | Apr 70 | × | None | Not evaluated | | TM-9-2320-
218-34P | | Truck, Utility,
M151 | y, 1/4-Ton, 4x4 | Apr 68 | Apr 70 | × | None | Not evaluated | | TM-9-2320-
218-34P C/1 | П | Truck, Utility,
M151A2 | y, 1/4-Ton, 4x4, | Jan 70 | Apr 70 | X | None | Not evaluated | | | | | | | | | | | | | _ | | | | | | | | | | | 1 | | | | | | | | |---------------------------|---------------|------------------|-----------|----------------------|------------|----------|--------|-------------|------------------------| | SPECIAL TOOLS A | AND PROJECT | °° | | NOMENCLATURE | TURE | | | | TDENTIFICATION | | TEST EQUIPMENT CH | CHART 1-VG- | 1-VG-120-151-034 | -034 | Truck, Ut | Utility, | 1/4-Ton, | on, 4: | 4x4, M151A2 | 02DU8 670 | | | | MAINTENANCE | NANCE | | | | | | | | | | | - OP CREW | | | | REG | | | | | | | ORG | | | | YES | TECHNICAL | | | NOMENCLATURE OR | FEDERAL STOCK | 1 1 | DIRECT | DATE | EVALUATION | NO F | o
g | MANUAL | | | Ž | L | PRE | RECM | RECEIVED | ADGT 1 | I NA DOT | O Z | REFERENCE | REMARKS | | , | 2 | 3 | 4 | 5 | 9 | 7 | 8 | 6 | 01 | | Bag, cotton duck | 5140-772-4142 | ၁ | ၁ | Apr 70 | X | | | 9-2320-218- | Ж ЭОЕ Ж | | | | | | | | | | 10 | | | Jack | 2120-729-5779 | ပ | S | Apr 70 | × | | | • | | | Pliers, slip joint | 5120-223-7397 | O | U | | × | | | | | | river | 5120-222-8852 | ပ | ပ | Apr 70 | × | | | | | | Wrench, adjustable | 5120-240-5328 | ပ | ၁ | Apr 70 | Х | | | | | | Wrench, socket handle | 5120-811-4114 | ၁ | င | Apr 70 | X | | | | | | jack | 5120-708-3364 | ၁ | ၁ | Apr 70 | × | | | 9-2320-218- | Ж Д | | | | | | | | | | 10 | | | Tool kit, Set A | 4910-627-7048 | 0 | 0 | Apr 70 | × | | | 9-2320-218- | Organizational tools | | | | | | | | - | | 20P | available and utilized | | Tool kit, Set B | 4910-627-7049 | 0 | 0 | Apr 70 | X | | | 9-2320-218- | | | | | | | | | | | 20P | | | Tool kit, Set B | 4910-627-7049 | 0 |
0 | Apr 70 | × | | | 9-2320-218- | | | | | | | | | | | 34P | | | Sling, engine and | 4910-627-7044 | 0 | 0 | Apr 70 | × | | | 9-2320-218- | Organizational tools | | | | | | | | | | 34P | available and utilized | | | | | | | | | | , | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | , | · | STEYP-TE Form 123, 11 Dec | 69 (Rev). | Previous | | edition is obsolete. | olete. | | | | | #### APPENDIX V. REFERENCES - 1. Directive for Initial Production Test of Trucks, Utility: 1/4-Ton, 4x4, M151A2, USATECOM Project No. 1-VG-120-151-034, 15 January 1970. - 2. Letter, U.S. Army Aberdeen Research and Development Center, AMXCC-FL, subject "Temperature Limits for Lubricating Oils and Hydraulic Fluids," 24 October 1967. - 3. MIL-A-13488A(Ord), Military Specification for Air Cleaner, Engine: Heavy-Duty, Oil Bath Type (for Internal Combustion Engines), 22 December 1955. - 4. MIL-STD-130C, Military Standard for Identification Marking of U.S. Military Property, 29 September 1967. - 5. MIL-STD-642H, Identification Marking of Combat and Tactical Transport Vehicles, 1 November 1968. - 6. MIL-T-45331C(MO), Military Specification for Truck, Utility: 1/4-Ton, 4x4, M151A1, 4 February 1966. - 7. MTP 2-2-614, Aberdeen Proving Ground, subject "Toxic Hazard Test for Vehicles," 18 June 1968. - 8. MTP 2-2-503, Aberdeen Proving Ground, subject 'Maintenance, Vehicle," 15 January 1966. - 9. MTP 2-4-001, Yuma Proving Ground, subject 'Desert Environmental Testing of Wheeled and Tracked Vehicles," 1 March 1968 - 10 Test Plan for Initial Production Test of Truck, Utility, 1/4-Ton, 4x4, M151A2, Yuma Proving Ground, January 1970. - USATECOM Regulation 750-15, subject "Maintenance of Supplies and Equipment," 1 December 1969. - 12. Slater, F. G., Inspection Comparison Test of Truck, Utility, 1/4-Ton, M151A1, USATECOM Project No. 1-7-4030-87, YPG Report 9012, January 1969. - 13. Holman, John C., Inspection Comparison Test of Truck, Utility, 1/4-Ton, Mi51A1, USATECOM Project No. 1-VG-120-151-016, YPG Report 9089, December 1969. - 14. Foster, J. W., Product Improvement Test of Components for Truck, Utility, 1/4-Ton, 4x4, M151A1, YPG Report 9024, March 1969. ### APPENDIX VI. ABBREVIATIONS gm - Gram(s) GVW - Gross vehicle weight MTP - Materiel Test Procedure Para. - Paragraph PN - Part number USATECOM - U.S. Army Test and Evaluation Command MMBM - Mean miles between maintenance MMH - Maintenance man-hours MTBM - Mean time between maintenance MTBF - Mean time between failures #### APPENDIX VII. DESCRIPTION OF YPG TEST COURSES #### Dynamometer Course (Also Paved Durability Test Course) A 2-mile smooth near-level (0.8 percent upgrade from south to north) 30-foot wide roadway with 500-foot radius turn-arounds at each end, surfaced with a high strength asphalt. The course is located at an elevation of approximately 470 feet above sea level and is staked at 0.1-mile intervals. #### Truck Gravel Course (Straight Secondary) An elongated loop, 3.1 miles in length and 40 feet wide with a graded gravel surface; this course is used to simulate vehicle operation at convoy speeds on secondary roads. #### Tank Gravel Course (Winding Secondary) A 3.6-mile compacted and graded gravel course with short, straight sections and curves of varying radii. This course provides a test of steering mechanisms at medium vehicle speeds. #### Truck Level Cross-Country A 6.4-mile cross-country course over typical terrain consisting of desert pavement, sand and gravel washes, and loose sandy areas. This test course is used for durability tests of wheeled vehicles. The course is relatively level except for sharp embankments encountered where washes are crossed. #### Truck Hilly Cross-Country Course The course is a 2.7-mile test course with grades to 20 percent, several hundred feet in length. The surface varies from a rough, stony surface to loose rock, gravel and sand. Operation on this course requires frequent braking and shifting of transmission gears under load. #### Belgian Block Equivalent Course The course has a rough, stony surface with short straight sections and curves of varying radii. The course subjects the vehicle to severe, high frequency vibration. ### APPENDIX IX. DISTRIBUTION LIST | NAME AND ADDRESS | NO. OF COPIES | |---|---------------| | Commanding General U.S. Army Test and Evaluation Command ATTN: AMSTE-BB Aberdeen Proving Ground, Maryland 21005 | 35 | | Commanding General U.S. Army Materiel Command ATTN: AMCRD-GV AMCRP-L AMCRD-R AMCRD-U AMCMA-V AMCQA-E AMCSF Washington, D. C. 20315 | 2* 2* 1 1* 1 | | Assistant Chief of Staff for Force Development
Department of the Army Systems Staff Officers
Washington, D. C. 20310 | 1 | | Office of the Chief of Research and Development ATTN: CRDME-1 CRDPE-S Department of the Army Washington, D. C. 20310 | 7
1 | | Commanding Officer U.S. Army Logistic Doctrine, Systems and Readiness Agency ATTN: LDSRA-ME New Cumberland Army Depot, P.O. Box 2947 Harrisburg, Pennyslvania 17105 | 1 | | Commanding General U.S. Army Combat Developments Command ATTN: USACDC LnO, USATECOM Aberdeen Proving Ground, Maryland 21005 | 23* | | Commanding General U.S. Army Ordnance Center and School Aberdeen Proving Ground, Maryland 21005 | 1 | | *Distribution to be made by USATECOM. | TY_1 | IX-1 | NAME AND ADDRESS | NO. OF COPIES | | |--|---------------|--| | Commanding General U.S. Continental Army Command ATTN: ATIT-RD-MD Fort Monroe, Virginia 23351 | 4 | | | Commanding General U.S. Army Tank-Automotive Command ATTN: AMSTA-R Warren, Michigan 48090 | 20 | | | Commandant U.S. Army Armor School Fort Knox, Kentucky 40121 | 1 | | | Commandant U.S. Army Infantry School Fort Benning, Georgia 31905 | 1 | | | Commandant U.S. Army Artillery and Missile School Fort Sill, Oklahoma 73503 | 1 | | | Commandant U.S. Army Quartermaster School Fort Lee, Virginia 23801 | 1 | | | Commandant U.S. Army Transportation School Fort Eustis, Virginia 23604 | 1 | | | Commandant U.S. Marine Corps ATTN: Code AX Washington, D. C. 20380 | 1 | | | Commanding Officer U.S. Army Medical Service Test and Evaluation Activity ATTN: MEDEW-TE Fort Sam Houston, Texas 76841 | 1 | | | Commandant
U.S. Army Air Defense School
Fort Bliss, Texas 79906 | 1 | | | NAME AND ADDRESS | NO. OF COPIES | |--|---------------| | Commanding Officer Aberdeen Proving Ground ATTN: STEAP-MT STEAP-FI Aberdeen Proving Ground, Maryland 21005 | 1
12 | | Commanding Officer U.S. Army General Equipment Test Activity Fort Lee, Virginia 23801 | 1 | | Commanding Officer U.S. Army Arctic Test Center APO Seattle 98733 | 1 | | Commanding Officer U.S. Army Tropic Test Center Post Office, Drawer 942 Fort Clayton, Canal Zone | 1 | | Commanding Officer U.S. Army Transportation Engineering Agency Military Traffic Management and Terminal Service ATTN: MTT-TG Fort Eustis, Virginia 23604 | 1 | | Commanding General U.S. Army Combat Development Experimentation Command ATTN: Technical Library, Box 22 Fort Ord, California 93941 | 1 | | Office of the Surgeon General Department of the Army ATTN: MEDD-SC Washington, D. C. 20315 | 1 | | President
U.S. Army Infantry Board
Fort Benning, Georgia 31905 | 1 | | President U.S. Army Armor and Engineer Board Fort Knox, Kentucky 40121 | 1 | | President U.S. Army Artillery Board Fort Sill, Oklahoma 73504 | 1 | | NAME AND ADDRESS | NO. OF COPIES | |--|-----------------------| | President
U.S. Army Airborne, Electronics and Special
Warfare Board
Fort Bragg, North Carolina 28307 | 1 | | President
U.S. Army Maintenance Board
Fort Knox, Kentucky 40121 | 1 | | Commander Defense Documentation Center for Scientific and Technical Information ATTN: Document Service Center Cameron Station Alexandria, Virginia 22314 | 20 | | Commander Military Traffic Management and Terminal Service ATTN: MTMTS-RSE Washington, D. C. 20315 | 1 | | Director Development Center Marine Corps Development and Education Command Quantico, Virginia 22134 | 1 | | U.S. Army Transportation Engineering Agency MTMTS Liaison Officer U.S. Army Airborne, Electronics and Sepcial Warfare Board Fort Bragg, North Carolina 28307 | 1 | | U.S. Marine Corps Liaison Officer
U.S. Army Test and Evaluation Command
Aberdeen Proving Ground, Maryland 21005 | 1 | | Commanding General U.S. Army Tank-Automotive Command ATTN: AMSTA-QKP AMSTA-QKW AMSTA-QB AMSTA-BSL AMSTA-REB | 2
1
2
1
3 | | Warren, Michigan 48090 President U.S. Army Air Defense Board Fort Bliss, Texas 79906 IX-4 | 1 | | MARIE THAN TANDENSO | NO. OF COPIES | |--|---------------| | Commanding General U.S. Army Tank-Automotive Command Director, DCASR, Detroit ATTN: DCRD-QM Warren, Michigan 48090 | 6 | | Ford Motor Company Military Truck Operation ATTN: Mr. W. Keiser 15050 Woodward Avenue Highland Park, Michigan 48203 | 2 | | Ford Motor Company Military Truck Operation ATTN: Mr. E. Reinecker, QAR 15050 Woodward Avenue Highland Park, Michigan 48203 | 2 | | Ford Motor Company Special Military Vehicles Operations ATTN: USATECOM M151 Resident Engineer Garrison Place Building 19855 Outer
Drive Dearborn, Michigan 48124 | 3 | | Commanding Officer Yuma Proving Ground ATTN: STEYP-MTM STEYP-ADA (Library) Yuma, Arizona 85364 | 6
1 | | Security Classification | | | | | | |--|---|---------------|----------------------------------|--|--| | DOCUMENT CONTI | | | | | | | (Security classification of title, body of abstract and indexing a | | | | | | | 1. ORIGINATING ACTIVITY (Corporate author) | 20. | REPORT SEC | CURITY CLASSIFICATION . | | | | Yuma Proving Ground | | Unclassified | | | | | | 2b. | GROUP | | | | | Yuma, Arizona 85364 | | Non | Δ. | | | | 3. REPORT TITLE | | 11011 | | | | | • | | | | | | | INITIAL PRODUCTION TEST OF TRUCK, UTILITY, | , 1/4-TON, 4X4 | , M151A2, | USATECOM PROJECT | | | | NO. 1-VG-120-151-034 | | | | | | | | | | | | | | 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) | | | | | | | Final Report, 6 April to 3 August 1970 | • | | | | | | 5. AUTHOR(S) (First name, middle initial, last name) | | | | | | | , · · · · · · · · · · · · · · · · · · · | | | | | | | Yala Charmalan CDA | | | | | | | John Shoemaker, SP4 | | | | | | | | | | | | | | 6. REPORT DATE | 78. TOTAL NO. OF P | AGES | 7b. NO. OF REFS | | | | October 1970 | 127 | | 14 | | | | Sa. CONTRACT OR GRANT NO. | 94. ORIGINATOR'S R | EPORT NUMB | ER(\$) | | | | | | | • | | | | b. PROJECT NO. | yna n | | | | | | | YPG Report | E 0049 | | | | | USATECOM Project No. 1-VG-120-151-034 | Sh. OTHER REPORT | NO(S) (Any of | her numbers that may be assigned | | | | •• | this report) | | , - | | | | | Firing Co. | de N | | | | | d. | 111111111111111111111111111111111111111 | | | | | | 10. DISTRIBUTION STATEMENT | | | . 1 | | | | Each transmittal of this document outside | the Departmen | t of Dele | ense must have prior | | | | approval of U.S. Army Tank-Automotive Com | mand, Warren, | Michigan. | • | | | | •• | | | | | | | 11. SUPPLEMENTARY NOTES | 12. SPONSORING MILITARY ACTIVITY | | | | | | | U.S. Army Tank-Automotive Command | | | | | | Vana | Warren, Michigan 48090 | | | | | | None | """"""""""""""""""""""""""""""""""""""" | gan 100. | | | | | | <u> </u> | | | | | | An initial production test of three True | cke Utility | 1/4-Ton | 4x4. M151A2 was con- | | | | An initial production test of three fide | oriod 6 April | ±0 3 Augu | 1970 | | | | ducted by Yuma Proving Ground during the po | SITOU O APITI | LO J Augo | | | | | The purpose of the test was to determine | e contractor c | onformano | ce to contractual re- | | | | quirements, investigate adequacy of quality | y assurance pr | ocedures | and provide verili- | | | | cation of safety of the vehicles with part | icular emphasi | s on veh: | icle stability. | | | | After 1000 miles of break-in, each truc | k completed ap | proximate | ely 20,000 miles of | | | | durability operation. Cooling, dust, toxic | c hazard and v | arious p | erformance tests were | | | | durability operation. Cooring, dust, toxi | e ware made | Tests we | re also undertaken to | | | | run, and safety and maintenance evaluation | | | | | | | determine the effect of the new semi-trail | ing arm rear s | uspensio | n on senicie pranitirà | | | and handling. It was concluded that: - Vehicle was not adequately suppressed for radio interference radiation. - The design and/or quality of the A-frame control arms and propeller shaft yokes are inadequate. - c. Uneven application and brake pulling observed throughout test constitutes a safety hazard. - d. The rear suspension redesign has substantially improved vehicle stability and handling. It was recommended that the brake and A-frame problems be corrected and that all deficiencies and as many shortcomings as possible be corrected. | D | FORM 1473 | REPLACES DD FORM 1473, 1 JAN 84, WHICH IS
OBSOLETE FOR ARMY USE. | Unclassified | |---|-----------|---|-------------------------| | | | | Security Classification | | Security Classification | | LINK A | | LINK B | | кс | |--|------------|---------|-------|---------|------|-----| | KEY WORDS | ROLE | WT | ROLE | wT | ROLE | WT | | | | | | | | | | | ļ | | ٠. | | | | | Truck, Utility, 1/4-Ton, 4x4, M151A2 | | | | | | | | Durability | 1 | İ | | | | 1 | | Durability | | | | | | | | Performance | | | | | 1 . | · | | | 1 | | Ì | 1 | | | | | | | | | 1 | | | | | | | | | | | | |] | | | | | | | | | | | | 1 | | | | | | | | 1 | | | | | | 1 | , | . [| | | | | | | . | | | | - | | | | | | | | 1 | | | 1 | | | | • | | 1 | | 1.50 | : | 1 | | 1 | | | | The state of s | . 1 4 27 | | | | | | | | | 1 | 1 | | | `` | | | 1 | | | | | | | | | | | | l | | | and the second of o | | 1 | | | | | | | | | 1 | | | | | | | | : 1 | ļ | | | | | | | | ļ.
! | | | | and the second of o | | | | | | | | | | | . : * | | | | | | | | , | | | | | | a la de la | 1 | | | | 1 | | | | · • • • | | | | | | the state of s | | | ĺ | 1 | . | | | | | | |]. | | } | | | ł | 1 | - | | 1 | | | · | | | | | | 1 | | | | | 1 | | 1 | | | | | | | | | | | 1 | | | - 1 | - 1 | | | | | | | 1 | 1 | | | 1 | | | | | | | | | | UNCLASSIFIED Security Classification